一、Spark Shuffle 的发展
- Spark 0.8及以前 Hash Based Shuffle
- Spark 0.8.1 为Hash Based Shuffle引入File Consolidation机制
- Spark 0.9 引入ExternalAppendOnlyMap
- Spark 1.1 引入Sort Based Shuffle,但默认仍为Hash Based Shuffle
- Spark 1.2 默认的Shuffle方式改为Sort Based Shuffle
- Spark 1.4 引入Tungsten-Sort Based Shuffle
- Spark 1.6 Tungsten-sort并入Sort Based Shuffle
- Spark 2.0 Hash Based Shuffle退出历史舞台
1. 未优化的 HashShuffle 2. 优化后 HashShuffle (引入了 Consolidation 机制) 3. Sort-Based Shuffle
由于 HashShuffle 会产生很多的磁盘文件,引入 Consolidation 机制虽然在一定程度少了磁盘文件数量,但是不足以有效提高 Shuffle 的性能,适合中小型数据规模的大数据处理。
Spark 2.3中,唯一的支持方式为 SortShuffleManager,SortShuffleManager 中定义了 writer 和 reader 对应shuffle 的 map 和 reduce 阶段。reader 只有一种实现 BlockStoreShuffleReader,writer 有三种运行实现:
- BypassMergeSortShuffleWriter:当前 shuffle 没有聚合,并且分区数小于 spark.shuffle.sort.bypassMergeThreshold(默认200)
- UnsafeShuffleWriter:当条件不满足 BypassMergeSortShuffleWriter 时, 并且当前 rdd 的数据支持序列化(即 UnsafeRowSerializer),也不需要聚合, 分区数小于 2^24
- SortShuffleWriter:其余所有shufle
特点:
BypassMergeSortShuffle
1. 算法适用于没有聚合,数据量不大的场景, BypassMergeSortShuffleWriter 所有的中间数据都是在磁盘里,并没有利用内存。而且它只保证分区索引的排序,而并不保证数据的排序
2. 和Hash Shuffle中的HashShuffleWriter实现基本一致, 唯一的区别在于,map端的多个输出文件会被汇总为一个文件。 所有分区的数据会合并为同一个文件,会生成一个索引文件,是为了索引到每个分区的起始地址,可以随机 access 某个partition的所有数据
SortShuffleWriter
1. 会有不同的数据结构: PartitionedAppendOnlyMap(需要内部聚合), PartitionedPairBuffer 不需要内部聚合
2.处理步骤:
1. 使用 PartitionedAppendOnlyMap 或者 PartitionedPairBuffer 在内存中进行排序, 排序的 K 是(partitionId, hash(key)) 这样一个元组。
2. 如果超过内存 limit, 我 spill 到一个文件中,这个文件中元素也是有序的,首先是按照 partitionId的排序,如果 partitionId 相同, 再根据 hash(key)进行比较排序
3. 如果需要输出全局有序的文件的时候,就需要对之前所有的输出文件 和 当前内存中的数据结构中的数据进行 merge sort, 进行全局排序
UnsafeShuffleWriter
1. 触发条件:Serializer 支持 relocation,
2. 没有指定 aggregation 或者 key 排序,
3. partition 数量不能大于指定的阈值(2^24),因为 partition number 使用24bit 表示的
4. 特点: 原始数据首先被序列化处理,并且再也不需要反序列,在其对应的元数据被排序后,需要Serializer支持relocation,在指定位置读取对应数据
小结:
下图是相关的uml图
ShuffleHandle类 会保存shuffle writer算法需要的信息。根据ShuffleHandle的类型,来选择ShuffleWriter的类型。
ShuffleWriter负责在map端生成中间数据,ShuffleReader负责在reduce端读取和整合中间数据。
ShuffleManager 提供了registerShuffle方法,根据shuffle的dependency情况,选择出哪种ShuffleHandler。它对于不同的ShuffleHandler,有着不同的条件
- BypassMergeSortShuffleHandle : 该shuffle不需要聚合,并且reduce端的分区数目小于配置项spark.shuffle.sort.bypassMergeThreshold,默认为200
- SerializedShuffleHandle : 该shuffle不需要聚合,并且必须支持序列化时seek位置,还需要reduce端的分区数目小于16777216(1 << 24 + 1)
- BaseShuffleHandle : 其余情况
getWriter方法会根据registerShuffle方法返回的ShuffleHandler,选择出哪种 shuffle writer,原理比较简单:
-
如果是BypassMergeSortShuffleHandle, 则选择BypassMergeSortShuffleWriter
-
如果是SerializedShuffleHandle, 则选择UnsafeShuffleWriter
-
如果是BaseShuffleHandle, 则选择SortShuffleWriter
ShuffleWriter只有两个方法,write和stop方法。使用者首先调用write方法,添加数据,完成排序,最后调用stop方法,返回MapStatus结果。下面依次介绍ShuffleWriter的三个子类。
Spark MapOutputTracker 原理
Spark的shuffle过程分为writer和reader两块。 writer负责生成中间数据,reader负责整合中间数据。而中间数据的元信息,则由MapOutputTracker负责管理。 它负责writer和reader的沟通。
shuffle writer会将中间数据保存到Block里面,然后将数据的位置发送给MapOutputTracker。
shuffle reader通过向 MapOutputTracker获取中间数据的位置之后,才能读取到数据。
参考引用:
https://zhmin.github.io/2019/01/26/spark-shuffle-writer/