官方参考链接:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html#pandas.DataFrame.set_index
Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it.
- Parameters
- keyslabel or array-like or list of labels/arrays
-
This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, “array” encompasses
Series
,Index
,np.ndarray
, and instances ofIterator
. - dropbool, default True
-
Delete columns to be used as the new index.
- appendbool, default False
-
Whether to append columns to existing index.
- inplacebool, default False
-
If True, modifies the DataFrame in place (do not create a new object).
- verify_integritybool, default False
-
Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method.
- Returns
- DataFrame or None
-
Changed row labels or None if
inplace=True
.
个人理解:
这是一个设置index的命令,主要参数为keys. 这个参数可以式已经存在的df对象中的columns的名称,也可以是一个单独的数组对象,数组对象包含Series
, Index
, np.ndarray
, and instances of Iterator
.
drop :表示为是否丢弃设置为index的columns bool值,默认为true。
append: 是否为添加的索引,默认为flase,true会与源索引变成组合索引。
verify_integrity:检查新索引是否有重复项,默认为false。
官方代码实操学习
常规操作,设置一个列为index
In [32]: df = pd.DataFrame({'month': [1, 4, 7, 10], ...: 'year': [2012, 2014, 2013, 2014], ...: 'sale': [55, 40, 84, 31]}) In [33]: df Out[33]: month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 In [34]: df.set_index('month') Out[34]: year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31
设置append为True,组合为联合索引。
In [35]: df.set_index('year',append=True) Out[35]: month sale year 0 2012 1 55 1 2014 4 40 2 2013 7 84 3 2014 10 31
当然也可以通过设置多列,设置组合索引。
In [37]: df.set_index(['year','month']) Out[37]: sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 In [38]: In [38]: df.set_index([pd.Index([2,3,4,5]),'year']) Out[38]: month sale year 2 2012 1 55 3 2014 4 40 4 2013 7 84 5 2014 10 31
最后也可以设置外部传入的可迭代对象为index
In [39]: new_index = list('abcd') In [40]: df.set_index([new_index]) Out[40]: month year sale a 1 2012 55 b 4 2014 40 c 7 2013 84 d 10 2014 31