• Tensorflow学习教程利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类


    #coding:utf-8
    
    import tensorflow as tf
    from PIL import Image,ImageFilter
    from tensorflow.examples.tutorials.mnist import input_data
    
    def imageprepare(argv): # 该函数读一张图片,处理后返回一个数组,进到网络中预测
        """
        This function returns the pixel values.
        The imput is a png file location.
        """
        im = Image.open(argv).convert('L')
        width = float(im.size[0])
        height = float(im.size[1])
        newImage = Image.new('L', (28, 28), (255))  # creates white canvas of 28x28 pixels
    
        if width > height:  # check which dimension is bigger
            # Width is bigger. Width becomes 20 pixels.
            nheight = int(round((20.0 / width * height), 0))  # resize height according to ratio width
            if nheight == 0:  # rare case but minimum is 1 pixel
                nheight = 1
                # resize and sharpen
            img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
            wtop = int(round(((28 - nheight) / 2), 0))  # caculate horizontal pozition
            newImage.paste(img, (4, wtop))  # paste resized image on white canvas
        else:
            # Height is bigger. Heigth becomes 20 pixels.
            nwidth = int(round((20.0 / height * width), 0))  # resize width according to ratio height
            if (nwidth == 0):  # rare case but minimum is 1 pixel
                nwidth = 1
                # resize and sharpen
            img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
            wleft = int(round(((28 - nwidth) / 2), 0))  # caculate vertical pozition
            newImage.paste(img, (wleft, 4))  # paste resized image on white canvas
    
        # newImage.save("sample.png")
    
        tv = list(newImage.getdata())  # get pixel values
    
        # normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
        tva = [(255 - x) * 1.0 / 255.0 for x in tv]
        return tva
    def weight_variable(shape):
        initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1,shape = shape)
        return tf.Variable(initial)
    
    #卷基层
    def conv2d(x,W):
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    #池化层
    def max_pool_2x2(x):
        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    #定义两个placeholder
    x = tf.placeholder(tf.float32, [None,784])
    #y = tf.placeholder(tf.float32,[None,10])
    
    #改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
    x_image = tf.reshape(x, [-1,28,28,1])
    
    #初始化第一个卷基层的权值和偏置
    W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的
    b_conv1 = bias_variable([32])  #每个卷积核一个偏置值
    
    #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
    h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling
    
    #初始化第二个卷基层的权值和偏置
    W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征  由于前一层操作得到了32个特征图
    b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值
    
    #把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数
    h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling
    
    #28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14
    #第二次卷积后 变为14x14 第二次池化后变为7x7
    #通过上面操作后得到64张7x7的平面
    
    #初始化第一个全连接层的权值
    W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
    b_fc1 = bias_variable([1024]) #1024个节点
    
    #把第二个池化层的输出扁平化为一维
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    #求第一个全连接层的输出
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
    
    #keep_prob用来表示神经元的输出概率
    keep_prob  = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    
    #初始化第二个全连接层
    W_fc2 = weight_variable([1024,10])
    b_fc2 = bias_variable([10])
    
    #计算输出
    gailv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) 
    
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess,'/home/xxx/logs/mnistmodel-1')
        array = imageprepare('/home/xxx/logs/7.jpg') # 读一张包含数字的图片
        prediction = tf.argmax(gailv, 1) # 预测
        prediction = prediction.eval(feed_dict={x:[array],keep_prob:1.0},session=sess)
        print('The digits in this image is:%d' % prediction[0])
    复制代码
     
     
     
     
     
    第二修改部分:(上面的可能运行GPU会耗尽)

    #coding:utf-8

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data

    mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

    #每个批次的大小
    batch_size = 100

    n_batch = mnist.train._num_examples // batch_size

    def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布
    return tf.Variable(initial)

    def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)
    return tf.Variable(initial)

    #卷基层
    def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    #池化层
    def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    #定义两个placeholder
    x = tf.placeholder(tf.float32, [None,784])
    y = tf.placeholder(tf.float32,[None,10])

    #改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
    x_image = tf.reshape(x, [-1,28,28,1])

    #初始化第一个卷基层的权值和偏置
    W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的
    b_conv1 = bias_variable([32]) #每个卷积核一个偏置值

    #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
    h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling

    #初始化第二个卷基层的权值和偏置
    W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征 由于前一层操作得到了32个特征图
    b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值

    #把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数
    h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling

    #28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14
    #第二次卷积后 变为14x14 第二次池化后变为7x7
    #通过上面操作后得到64张7x7的平面

    #初始化第一个全连接层的权值
    W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
    b_fc1 = bias_variable([1024]) #1024个节点

    #把第二个池化层的输出扁平化为一维
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    #求第一个全连接层的输出
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

    #keep_prob用来表示神经元的输出概率
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

    #初始化第二个全连接层
    W_fc2 = weight_variable([1024,10])
    b_fc2 = bias_variable([10])

    #计算输出
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

    #交叉熵代价函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

    #使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    #结果存放在一个布尔列表中
    correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    saver = tf.train.Saver()
    with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(50):
    for batch in range(n_batch):
    batch_xs,batch_ys = mnist.train.next_batch(batch_size)
    sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
    batch_xstest,batch_ystest = mnist.test.next_batch(batch_size)
    acc = sess.run(accuracy,feed_dict={x: batch_xstest,y:batch_ystest,keep_prob:0.7})
    print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc))

    saver.save(sess,save_path='C:/Users/Administrator/Desktop/深度学习500问/logs/mnist_net.ckpt')

    结果 手写数字图片7被预测为7

    I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
    I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
    I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0)
    The digits in this image is:7
  • 相关阅读:
    OKR让你的目标杜绝“虎头蛇尾”
    OKR让你的团队更加优秀
    个人与企业OKR如何做好联结(三)
    OKR的最佳状态不是满分
    Tita OKR:目标地图的妙用
    个人与企业OKR如何做好联结(四)
    函数可以替换成过滤器demo
    @click传递事件和参数
    vue组件
    watch与computed区别
  • 原文地址:https://www.cnblogs.com/shuimuqingyang/p/9967999.html
Copyright © 2020-2023  润新知