Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
int size = nums.size();
if (size < 3) {
return res;
}
std::stable_sort(nums.begin(), nums.end());
for (int i = 0; i < size - 2; ++i) {
if (i > 0 && nums[i] == nums[i-1]) {
continue;
}
int a = nums[i];
int j = i + 1;
int k = size - 1;
for (; j < k; ) {
int bc = nums[j] + nums[k];
if (bc == -a) {
vector<int> vec({a, nums[j], nums[k]});
res.emplace_back(vec);
while (j < k && nums[j] == nums[j + 1]) { ++j; }
while (j < k && nums[k] == nums[k - 1]) { --k; }
++j;
--k;
} else if (bc > -a) {
--k;
} else { // bc < -a
++j;
}
}
}
return res;
}
};