一、分片枚举
通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下:
<tableRule name="sharding-by-intfile"> <rule> <columns>user_id</columns> <algorithm>hash-int</algorithm> </rule> </tableRule> <function name="hash-int" class="io.mycat.route.function.PartitionByFileMap"> <property name="mapFile">partition-hash-int.txt</property> <property name="type">0</property> <property name="defaultNode">0</property> </function>
配置说明
| 标签属性 | 说明 |
| ----------- | -----------------------------------------------------------|
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| mapFile | 标识配置文件名称 |
| type | 默认值为 0,0 表示 Integer,非零表示 String |
| defaultNode | 默认节点:小于 0 表示不设置默认节点,大于等于 0 设置默认节点 |
partition-hash-int.txt 配置:
10000=0
10010=1
DEFAULT_NODE=1 //默认节点
二、固定分片 hash 算法
本条规则类似于十进制的求模运算,区别在于是二进制的操作,是取 id 的二进制低 10 位,即 id 二进制 &1111111111。
此算法的优点在于如果按照 10 进制取模运算,在连续插入 1-10 时候 1-10 会被分到 1-10 个分片,增大了插入的事务控制难度,而此算法根据二进制则可能会分到连续的分片,减少插入事务事务控制难度。
<tableRule name="rule1"> <rule> <columns>user_id</columns> <algorithm>func1</algorithm> </rule> </tableRule> <function name="func1" class="io.mycat.route.function.PartitionByLong"> <property name="partitionCount">2,1</property> <property name="partitionLength">256,512</property> </function>
配置说明
分区长度:
默认为最大 2^n=1024 ,即最大支持 1024 分区。
约束:
count,length 两个数组的长度必须是一致的;
1024 = sum((count[i]*length[i]))
count 和 length 两个向量的点积恒等于 1024。
如果需要平均分配设置:平均分为 4 分片,partitionCount*partitionLength=1024。
<function name="func1" class="io.mycat.route.function.PartitionByLong"> <property name="partitionCount">4</property> <property name="partitionLength">256</property> </function>
三、范围约定
此分片适用于,提前规划好分片字段某个范围属于哪个分片。
<tableRule name="auto-sharding-long"> <rule> <columns>user_id</columns> <algorithm>rang-long</algorithm> </rule> </tableRule> <function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong"> <property name="mapFile">autopartition-long.txt</property> <property name="defaultNode">0</property> </function>
配置说明:
所有的节点配置都是从 0 开始,及 0 代表节点 1,此配置非常简单,即预先制定可能的 id 范围到某个分片:
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1
四、取模
此规则为对分片字段求摸运算。
<tableRule name="mod-long"> <rule> <columns>user_id</columns> <algorithm>mod-long</algorithm> </rule> </tableRule> <function name="mod-long" class="io.mycat.route.function.PartitionByMod"> <!-- how many data nodes --> <property name="count">3</property> </function>
配置说明:
| 标签属性 | 说明 |
| --------- | -------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| count | 分片数量 |
根据 id 进行十进制求模预算,相比固定分片 hash,此种在批量插入时可能存在批量插入单事务插入多数据分片,增大事务一致性难度。
五、按日期(天)分片
此规则为按天分片。
<tableRule name="sharding-by-date"> <rule> <columns>create_time</columns> <algorithm>sharding-by-date</algorithm> </rule> </tableRule> <function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate"> <property name="dateFormat">yyyy-MM-dd</property> <property name="sBeginDate">2014-01-01</property> <property name="sEndDate">2014-01-02</property> <property name="sPartionDay">10</property> </function>
配置说明:
| 标签属性 | 说明 |
| ----------- | -------------------------------------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| dateForma | 日期格式 |
| sBeginDate | 开始日期 |
| sEndDate | 结束日期 |
| sPartionDay | 分区天数,即默认从开始日期算起,分隔 10 天一个分区 |
如果配置了 sEndDate 则代表数据达到了这个日期的分片后循环从开始分片插入。
注意
在查询时,如果需要查询时间段应该使用between...and,使用>=或者<=会查询所有分片。
六、取模范围约束
此种规则是取模运算与范围约束的结合,主要为了后续数据迁移做准备,即可以自主决定取模后数据的节点分布。
<tableRule name="sharding-by-pattern"> <rule>TopESA - Win Cpp <columns>user_id</columns> <algorithm>sharding-by-pattern</algorithm> </rule> </tableRule> <function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPattern"> <property name="patternValue">256</property> <property name="defaultNode">2</property> <property name="mapFile">partition-pattern.txt</property> </function>
partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7
配置说明:
| 标签属性 | 说明 |
| ------------ | -------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| patternValue | 求模基数 |
| defaoultNod | 默认节点 |
| mapFile | 配置文件路径 |
配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推
如果 id 非数字,则会分配在 defaoultNode 默认节点。
七、截取数字做 hash 求模范围约束
此种规则类似于取模范围约束,此规则支持数据符号字母取模。
<tableRule name="sharding-by-prefixpattern"> <rule> <columns>user_id</columns> <algorithm>sharding-by-prefixpattern</algorithm> </rule> </tableRule> <function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPrefixPattern"> <property name="patternValue">256</property> <property name="prefixLength">5</property> <property name="mapFile">partition-pattern.txt</property> </function>
配置说明:
| 标签属性 | 说明 |
| ------------ | -------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| patternValue | 求模基数 |
| prefixLength | ASCII 截取的位数 |
| mapFile | 配置文件路径 |
partition-pattern.txt
# range start-end ,data node index
# ASCII
# 8-57=0-9 阿拉伯数字
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7
配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推。
此种方式类似取模范围约束,只不过采取的是将列种获取前 prefixLength 位列所有 ASCII 码的和进行求模。
sum%patternValue ,获取的值,在范围内的分片数
八、应用指定
此规则是在运行阶段有应用自主决定路由到那个分片。
<tableRule name="sharding-by-substring"> <rule> <columns>user_id</columns> <algorithm>sharding-by-substring</algorithm> </rule> </tableRule> <function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString"> <property name="startIndex">0</property><!-- zero-based --> <property name="size">2</property> <property name="partitionCount">8</property> <property name="defaultPartition">0</property> </function>
配置说明:
| 标签属性 | 说明 |
| ---------------- | -------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| partitionCount | 分区数 |
| defaultPartition | 默认分区 |
此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
例如:id=05-100000002,在此配置中代表根据 id 中从 startIndex=0,开始,截取 siz=2 位数字即 05,05 就是获取的分区,如果没传默认分配到 defaultPartition。
九、截取数字 hash 解析
此规则是截取字符串中的 int 数值 hash 分片。
<tableRule name="sharding-by-stringhash"> <rule> <columns>user_id</columns> <algorithm>sharding-by-stringhash</algorithm> </rule> </tableRule> <function name="sharding-by-stringhash" class="io.mycat.route.function.PartitionByString"> <property name="partitionLength">512</property><!-- zero-based --> <property name="partitionCount">2</property> <property name="hashSlice">0:2</property> </function>
配置说明:
| 标签属性 | 说明 |
| --------------- | ----------------------------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| partitionLength | 字符串hash求模基数 |
| partitionCount | 分区数 |
| hashSlice | 预算位,即根据子字符串中 int 值 hash 运算。 0 means str.length(), -1 means str.length()-1|
注意
hashSlice可以理解为substring(start,end),start为0则只表示0;
例1:值“45abc”,hash预算位0:2 ,取其中45进行计算
例2:值“aaaabbb2345”,hash预算位-4:0 ,取其中2345进行计算
十、一致性 hash
一致性 hash 预算有效解决了分布式数据的扩容问题。
<tableRule name="sharding-by-murmur"> <rule> <columns>user_id</columns> <algorithm>murmur</algorithm> </rule> </tableRule> <function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash"> <!-- 默认是 0 --> <property name="seed">0</property> <!-- 要分片的数据库节点数量,必须指定,否则没法分片 --> <property name="count">2</property> <!-- 一个实际的数据库节点被映射为这么多虚拟 节点,默认是 160 倍,也就是虚拟节点数是物理节点数的 160 倍 --> <property name="virtualBucketTimes">160</property> <!-- 节点的权重,没有指定权重的节点默认是 1。以 properties 文件的格式填写,以从 0 开始到 count-1 的整数值也就是节点索引为 key,以节点权重值为值。所有权重值必须是正整数,否则以 1 代替 --> <property name="weightMapFile">weightMapFile</property> <!-- 用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的 murmur hash 值与物理节 点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 --> <property name="bucketMapPath">/etc/mycat/bucketMapPath</property> </function>
十一、按单月小时拆分
此规则是单月内按照小时拆分,最小粒度是小时,可以一天最多 24 个分片,最少 1 个分片,一个月完后下月从头开始循环。每个月月尾,需要手工清理数据。
<tableRule name="sharding-by-hour"> <rule> <columns>create_time</columns> <algorithm>sharding-by-hour</algorithm> </rule> </tableRule> <function name="sharding-by-hour" class="io.mycat.route.function.LatestMonthPartion"> <property name="splitOneDay">24</property> </function>
配置说明:
| 标签属性 | 说明 |
| ----------- | -------------------------------------------- |
| columns | 标识将要分片的表字段(字符串类型yyyyMMddHH) |
| algorithm | 分片函数 |
| splitOneDay | 一天切分的分片数 |
注意
分片字段必须为字符串格式,否则分片不成功,默认存到第一个分片里面;
保存的时间格式必须为‘yyyymmddHH’格式,不能多也不能少字符,否则分片不成功,默认存到第一个分片里面;
十二、范围求模分片
先进行范围分片计算出分片组,组内再求模。
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题。
综合了范围分片和求模分片的优点,分片组内使用求模可以保证组内数据比较均匀,分片组之间是范围分片,可以兼顾范围查询。
最好事先规划好分片的数量,数据扩容时按分片组扩容,则原有分片组的数据不需要迁移。由于分片组内数据比较均匀,所以分片组内可以避免热点数据问题。
<tableRule name="auto-sharding-rang-mod"> <rule> <columns>id</columns> <algorithm>rang-mod</algorithm> </rule> </tableRule> <function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod"> <property name="mapFile">partition-range-mod.txt</property> <property name="defaultNode">21</property> </function>
配置说明:
| 标签属性 | 说明 |
| ----------- | ------------------------------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| mapFile | 配置文件路径 |
| defaultNode | 超过范围后的默认节点顺序号,节点从 0 开始。 |
partition-range-mod.txt
# 以下配置一个范围代表一个分片组,=号后面的数字代表该分片组所拥有的分片的数量。
# range start-end ,data node group size
0-200M=5 //代表有 5 个分片节点
200M1-400M=1
400M1-600M=4
600M1-800M=4
800M1-1000M=6
注意
如上0-200M存入到5个分片中,开始范围-结束范围=该分片组有多少个分片。如果超过配置范围需要增加分片组。
十三、日期范围HASH分片
思想与范围求模一致,当由于日期在取模会有数据集中问题,所以改成 hash 方法。
先根据日期分组,再根据时间 hash 使得短期内数据分布的更均匀。
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题。要求日期格式尽量精确些,不然达不到局部均匀的目的
<tableRule name="range-date-hash"> <rule> <columns>col_date</columns> <algorithm>range-date-hash</algorithm> </rule> </tableRule> <function name="range-date-hash" class="io.mycat.route.function.PartitionByRangeDateHash"> <property name="sBeginDate">2014-01-01 00:00:00</property> <property name="sPartionDay">365</property> <property name="dateFormat">yyyy-MM-dd HH:mm:ss</property> <property name="groupPartionSize">3</property> </function>
配置说明:
| 标签属性 | 说明 |
| ---------------- | -------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| sBeginDate | 开始日期 |
| sPartionDay | 多少天一个分片 |
| dateFormat | 日期格式 |
| groupPartionSize | 分片组的大小 |
注意
从sBeginDate时间开始计算,每sPartionDay天的数据为一个分片组,每个分片组可以分布在groupPartionSize个分片上面。上面的例子最多可以有三天进行分片,如果超出则会抛出以下异常。
Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Can't find a valid data node for specified node index :ALAN_TEST -> RANGE_DATE -> 2019-01-11 12:00:00 -> Index : 4
The error may involve com.mycat.test.model.AlanTest.insert-Inline
The error occurred while setting parameters
十四、冷热数据分片
根据日期查询日志数据 冷热数据分布 ,最近 n 个月的到实时交易库查询,超过 n 个月的按照 m 天分片。
<tableRule name="sharding-by-date"> <rule> <columns>create_time</columns> <algorithm>sharding-by-hotdate</algorithm> </rule> </tableRule> <function name="sharding-by-hotdate" class="io.mycat.route.function.PartitionByHotDate"> <property name="dateFormat">yyyy-MM-dd</property> <property name="sLastDay">10</property> <property name="sPartionDay">30</property> </function>
配置说明:
| 标签属性 | 说明 |
| ----------- | -------------------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| dateFormat | 日期格式 |
| sLastDay | 热数据的时间 |
| sPartionDay | 冷数据的分片天数(按照天数分片) |
注意
冷数据按照这个范围进行分片,例如上面的规则配置,今天是2019年1月21日,往前推10天为2019年1月12日,则2019年1月12日之前的数据为冷数据,该批冷数据的分片规则为30天一个分片,即2018-12-12至2019-01-11的数据放入第1个分片,2018-11-12至2018-12-11的数据放入第2个分片...以此类推,如果数据库分区不够,则在保存的时候会抛出以下异常
Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Can't find a valid data node for specified node index :ALAN_TEST -> CREATE_DATE -> 2018-11-09 12:00:00 -> Index : 3
十五、自然月分片
按月份列分区 ,每个自然月一个分片,格式 between 操作解析的范例。
<tableRule name="sharding-by-month"> <rule> <columns>create_time</columns> <algorithm>sharding-by-month</algorithm> </rule> </tableRule> <function name="sharding-by-month" class="io.mycat.route.function.PartitionByMonth"> <property name="dateFormat">yyyy-MM-dd</property> <property name="sBeginDate">2014-01-01</property> </function>
配置说明:
| 标签属性 | 说明 |
| ---------- | -------------------- |
| columns | 标识将要分片的表字段 |
| algorithm | 分片函数 |
| dateFormat | 日期格式 |
| sBeginDate | 开始日期(无默认值) |
| "sEndDate | 结束日期(无默认值) |
注意
- 默认设置,节点数量必须是12个,每12个月循环从开始分片插入
- 如配置了sBeginDate="2019-01"月是第0个分片,从该时间按月递增,无最大节点
- 配置了sBeginDate = "2015-01-01"sEndDate = "2015-12-01"该配置可以看成和第一个一致
- 配置了sBeginDate = "2015-01-01"sEndDate = "2015-03-01"该配置标识只有 3 个节点;很难与月份对应上;平均分散到 3 个节点上