hdu4911
max(逆序数-k,0)
1 #include <iostream> 2 #include<stdio.h> 3 #include<vector> 4 #include<queue> 5 #include<stack> 6 #include<string.h> 7 #include<algorithm> 8 #include<map> 9 using namespace std; 10 #define LL long long 11 #define gcd(a,b) (b==0?a:gcd(b,a%b)) 12 #define lcm(a,b) (a*b/gcd(a,b)) 13 //O(n)求素数,1-n的欧拉数 14 #define N 100010 15 //A^x = A^(x % Phi(C) + Phi(C)) (mod C) 16 map<int,int>f; 17 struct node 18 { 19 int a; 20 int id; 21 }p[N]; 22 int s[N<<2],b[N]; 23 void up(int w) 24 { 25 s[w] = s[w<<1]+s[w<<1|1]; 26 } 27 void build(int l,int r,int w) 28 { 29 if(l==r) 30 { 31 s[w] = 0; 32 return ; 33 } 34 int m = (l+r)>>1; 35 build(l,m,w<<1); 36 build(m+1,r,w<<1|1); 37 up(w); 38 } 39 void update(int p,int d,int l,int r,int w) 40 { 41 if(l==r) 42 { 43 s[w] += d; 44 return ; 45 } 46 int m =(l+r)>>1; 47 if(p<=m) 48 update(p,d,l,m,w<<1); 49 else 50 update(p,d,m+1,r,w<<1|1); 51 up(w); 52 53 } 54 int query(int a,int b,int l,int r,int w) 55 { 56 if(a<=l&&b>=r) 57 return s[w]; 58 int m = (l+r)>>1; 59 int res = 0; 60 if(a<=m) res+=query(a,b,l,m,w<<1); 61 if(b>m) res+=query(a,b,m+1,r,w<<1|1); 62 return res; 63 } 64 bool cmp(node a,node b) 65 { 66 return a.a<b.a; 67 } 68 int main() 69 { 70 int n,i,j,k; 71 while(scanf("%d%d",&n,&k)!=EOF) 72 { 73 f.clear(); 74 for(i = 1; i<= n; i++) 75 { 76 scanf("%d",&p[i].a); 77 p[i].id = i; 78 b[i] = p[i].a; 79 } 80 sort(b+1,b+n+1); 81 f[b[1]] = 1; 82 int o = 1; 83 for(i = 2; i<= n; i++) 84 if(b[i]!=b[i-1]) 85 { 86 f[b[i]] = ++o; 87 } 88 build(1,o,1); 89 LL s = 0 ; 90 for(i = 1; i<= n ;i++) 91 { 92 //cout<<f[p[i].a]<<endl; 93 int kk = 0; 94 if(f[p[i].a]<o) 95 kk = query(f[p[i].a]+1,o,1,o,1); 96 update(f[p[i].a],1,1,o,1); 97 s+=kk; 98 } 99 LL x = 0; 100 s = max(x,s-k); 101 cout<<s<<endl; 102 } 103 return 0; 104 }
HDU4913
几个数的LCM = 分解质因子之后每个质因子的最高次幂相乘之积 这里因为只有2、3 . lcm = 2^max*3^max
可以把b从小到大排序
x1 a1 b1
x2 a2 b2
x3 a3 b3
x4 a4 b4
假如现在集合里面没有数为空集,从上往下依次插入这些数,插入x1时 ,因为当前b1是最大的,它所构成的所有集合中3的最高次幂肯定选b1,
所以现在只需找到集合中的2的最高次幂分别有哪些,显然第一个只有 a1.而当插入第二个、第三个、第四个时,3的最高次幂分别为b2 b3 b4 ,a的选择会有多种,
对于如果选择了a1那么这样的集合将会有2^k个,k = 比a1小的数的个数,总的式子为 bi(2^k1*2^a1+2^k2*2^a2+2^k3*2^a3......) ( 所有的aj<ai)
这样可以开一个线段树维护前面有多少个比ai小的数,再开一个线段树维护后面的每一项的总值,例如1就为2^k1*2^a1
每插入一项,就把2^ki*2^ai放入第i个位置,求完当前和值后,将所有大于ai的值*2,依次扫描一遍就可得出结果。
1 #include <iostream> 2 #include<stdio.h> 3 #include<vector> 4 #include<queue> 5 #include<stack> 6 #include<string.h> 7 #include<algorithm> 8 #include<map> 9 using namespace std; 10 #define LL __int64 11 #define gcd(a,b) (b==0?a:gcd(b,a%b)) 12 #define lcm(a,b) (a*b/gcd(a,b)) 13 #define N 100005 14 #define mod 1000000007 15 struct node 16 { 17 int a,b; 18 int id; 19 } p[N]; 20 LL lz[N<<2],s[N<<2]; 21 LL sum[N<<2]; 22 int po[N]; 23 LL mul(LL a,LL b,LL m) 24 { 25 LL d,t; 26 d=1; 27 t=a; 28 while (b>0) 29 { 30 if (b%2==1) 31 d=(d*t)%m; 32 b/=2; 33 t=(t*t)%m; 34 } 35 return d; 36 } 37 bool cmp(node x,node y) 38 { 39 return x.a<y.a; 40 } 41 bool cmpp(node x,node y) 42 { 43 return x.b<y.b; 44 } 45 void up(int w) 46 { 47 s[w] = (s[w<<1]+s[w<<1|1])%mod; 48 } 49 void build(int l,int r,int w) 50 { 51 lz[w] = 1; 52 if(l==r) 53 { 54 s[w] = 0; 55 return ; 56 } 57 int m = (l+r)>>1; 58 build(l,m,w<<1); 59 build(m+1,r,w<<1|1); 60 up(w); 61 } 62 void down(int w,int m) 63 { 64 if(lz[w]!=1) 65 { 66 lz[w<<1] = (lz[w<<1]*lz[w])%mod; 67 lz[w<<1|1] = (lz[w<<1|1]*lz[w])%mod; 68 s[w<<1] = (s[w<<1]*lz[w])%mod; 69 s[w<<1|1] = (s[w<<1|1]*lz[w])%mod; 70 lz[w] = 1; 71 } 72 } 73 void update(int p,LL d,int l,int r,int w) 74 { 75 if(l==r) 76 { 77 s[w] = d; 78 return ; 79 } 80 down(w,r-l+1); 81 int m = (l+r)>>1; 82 if(p<=m) 83 update(p,d,l,m,w<<1); 84 else 85 update(p,d,m+1,r,w<<1|1); 86 up(w); 87 } 88 void update1(int a,int b,LL d,int l,int r,int w) 89 { 90 if(a<=l&&b>=r) 91 { 92 s[w] = (s[w]*d)%mod; 93 lz[w] = (lz[w]*d)%mod; 94 return ; 95 } 96 down(w,r-l+1); 97 int m = (l+r)>>1; 98 if(a<=m) update1(a,b,d,l,m,w<<1); 99 if(b>m) update1(a,b,d,m+1,r,w<<1|1); 100 up(w); 101 } 102 LL query(int a,int b,int l,int r,int w) 103 { 104 if(a<=l&&b>=r) return s[w]; 105 int m = (l+r)>>1; 106 LL res = 0; 107 if(a<=m) res+=query(a,b,l,m,w<<1); 108 if(b>m) res = (res+query(a,b,m+1,r,w<<1|1))%mod; 109 return res; 110 } 111 void up1(int w) 112 { 113 sum[w] = sum[w<<1]+sum[w<<1|1]; 114 } 115 void build1(int l,int r,int w) 116 { 117 if(l==r) 118 { 119 sum[l] = 0; 120 return ; 121 } 122 int m = (l+r)>>1; 123 build1(l,m,w<<1); 124 build1(m+1,r,w<<1|1); 125 up1(w); 126 } 127 void update2(int p,int l,int r,int w) 128 { 129 if(l==r) 130 { 131 sum[w] = 1; 132 return ; 133 } 134 int m = (l+r)>>1; 135 if(p<=m) 136 update2(p,l,m,w<<1); 137 else update2(p,m+1,r,w<<1|1); 138 up1(w); 139 } 140 int query1(int a,int b,int l,int r,int w) 141 { 142 if(a<=l&&b>=r) 143 { 144 return sum[w]; 145 } 146 int m = (l+r)>>1; 147 int res=0; 148 if(a<=m) res+=query1(a,b,l,m,w<<1); 149 if(b>m) res+=query1(a,b,m+1,r,w<<1|1); 150 return res; 151 } 152 int main() 153 { 154 int n,i; 155 while(scanf("%d",&n)!=EOF) 156 { 157 memset(sum,0,sizeof(sum)); 158 for(i = 1; i<= n; i++) 159 { 160 scanf("%d%d",&p[i].a,&p[i].b); 161 p[i].id = i; 162 } 163 sort(p+1,p+n+1,cmp); 164 for(i = 1; i <= n ; i++) 165 { 166 po[p[i].id] = i; 167 } 168 sort(p+1,p+n+1,cmpp); 169 build(1,n,1); 170 LL ans = 0; 171 build1(1,n,1); 172 for(i = 1; i <= n; i++) 173 { 174 int k = query1(1,po[p[i].id],1,n,1); 175 //cout<<k<<" "<<p[i].a<<" "<<po[p[i].id]<<endl; 176 update2(po[p[i].id],1,n,1); 177 update(po[p[i].id],mul(2,p[i].a+k,mod),1,n,1); 178 LL ss = query(po[p[i].id],n,1,n,1); 179 // cout<<ss<<endl; 180 ans=(ans+(mul(3,p[i].b,mod)*ss)%mod)%mod; 181 if(po[p[i].id]<n) 182 update1(po[p[i].id]+1,n,2,1,n,1); 183 } 184 printf("%I64d ",ans); 185 } 186 return 0; 187 }
1 #include <iostream> 2 #include<stdio.h> 3 #include<vector> 4 #include<queue> 5 #include<stack> 6 #include<string.h> 7 #include<algorithm> 8 #include<map> 9 using namespace std; 10 #define LL __int64 11 #define gcd(a,b) (b==0?a:gcd(b,a%b)) 12 #define lcm(a,b) (a*b/gcd(a,b)) 13 #define N 100005 14 #define mod 1000000007 15 struct node 16 { 17 int a,b; 18 int id; 19 } p[N]; 20 LL lz[N<<2],s[N<<2]; 21 LL sum[N<<2]; 22 int po[N]; 23 LL mul(LL a,LL b,LL m) 24 { 25 LL d,t; 26 d=1; 27 t=a; 28 while (b>0) 29 { 30 if (b%2==1) 31 d=(d*t)%m; 32 b/=2; 33 t=(t*t)%m; 34 } 35 return d; 36 } 37 bool cmp(node x,node y) 38 { 39 return x.a<y.a; 40 } 41 bool cmpp(node x,node y) 42 { 43 return x.b<y.b; 44 } 45 void up(int w) 46 { 47 s[w] = (s[w<<1]+s[w<<1|1])%mod; 48 } 49 void build(int l,int r,int w) 50 { 51 lz[w] = 1; 52 if(l==r) 53 { 54 s[w] = 0; 55 return ; 56 } 57 int m = (l+r)>>1; 58 build(l,m,w<<1); 59 build(m+1,r,w<<1|1); 60 up(w); 61 } 62 void down(int w,int m) 63 { 64 if(lz[w]!=1) 65 { 66 lz[w<<1] = (lz[w<<1]*lz[w])%mod; 67 lz[w<<1|1] = (lz[w<<1|1]*lz[w])%mod; 68 s[w<<1] = (s[w<<1]*lz[w])%mod; 69 s[w<<1|1] = (s[w<<1|1]*lz[w])%mod; 70 lz[w] = 1; 71 } 72 } 73 void update(int p,LL d,int l,int r,int w) 74 { 75 if(l==r) 76 { 77 s[w] = d; 78 return ; 79 } 80 down(w,r-l+1); 81 int m = (l+r)>>1; 82 if(p<=m) 83 update(p,d,l,m,w<<1); 84 else 85 update(p,d,m+1,r,w<<1|1); 86 up(w); 87 } 88 void update1(int a,int b,LL d,int l,int r,int w) 89 { 90 if(a<=l&&b>=r) 91 { 92 s[w] = (s[w]*d)%mod; 93 lz[w] = (lz[w]*d)%mod; 94 return ; 95 } 96 down(w,r-l+1); 97 int m = (l+r)>>1; 98 if(a<=m) update1(a,b,d,l,m,w<<1); 99 if(b>m) update1(a,b,d,m+1,r,w<<1|1); 100 up(w); 101 } 102 LL query(int a,int b,int l,int r,int w) 103 { 104 if(a<=l&&b>=r) return s[w]; 105 int m = (l+r)>>1; 106 LL res = 0; 107 if(a<=m) res+=query(a,b,l,m,w<<1); 108 if(b>m) res = (res+query(a,b,m+1,r,w<<1|1))%mod; 109 return res; 110 } 111 void up1(int w) 112 { 113 sum[w] = sum[w<<1]+sum[w<<1|1]; 114 } 115 void build1(int l,int r,int w) 116 { 117 if(l==r) 118 { 119 sum[l] = 0; 120 return ; 121 } 122 int m = (l+r)>>1; 123 build1(l,m,w<<1); 124 build1(m+1,r,w<<1|1); 125 up1(w); 126 } 127 void update2(int p,int l,int r,int w) 128 { 129 if(l==r) 130 { 131 sum[w] = 1; 132 return ; 133 } 134 int m = (l+r)>>1; 135 if(p<=m) 136 update2(p,l,m,w<<1); 137 else update2(p,m+1,r,w<<1|1); 138 up1(w); 139 } 140 int query1(int a,int b,int l,int r,int w) 141 { 142 if(a<=l&&b>=r) 143 { 144 return sum[w]; 145 } 146 int m = (l+r)>>1; 147 int res=0; 148 if(a<=m) res+=query1(a,b,l,m,w<<1); 149 if(b>m) res+=query1(a,b,m+1,r,w<<1|1); 150 return res; 151 } 152 int main() 153 { 154 int n,i; 155 while(scanf("%d",&n)!=EOF) 156 { 157 memset(sum,0,sizeof(sum)); 158 for(i = 1; i<= n; i++) 159 { 160 scanf("%d%d",&p[i].a,&p[i].b); 161 p[i].id = i; 162 } 163 sort(p+1,p+n+1,cmp); 164 for(i = 1; i <= n ; i++) 165 { 166 po[p[i].id] = i; 167 } 168 sort(p+1,p+n+1,cmpp); 169 build(1,n,1); 170 LL ans = 0; 171 build1(1,n,1); 172 for(i = 1; i <= n; i++) 173 { 174 int k = query1(1,po[p[i].id],1,n,1); 175 //cout<<k<<" "<<p[i].a<<" "<<po[p[i].id]<<endl; 176 update2(po[p[i].id],1,n,1); 177 update(po[p[i].id],mul(2,p[i].a+k,mod),1,n,1); 178 LL ss = query(po[p[i].id],n,1,n,1); 179 // cout<<ss<<endl; 180 ans=(ans+(mul(3,p[i].b,mod)*ss)%mod)%mod; 181 if(po[p[i].id]<n) 182 update1(po[p[i].id]+1,n,2,1,n,1); 183 } 184 printf("%I64d ",ans); 185 } 186 return 0; 187 }