Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
***************************************************************************************************************************
单调队列(有技巧)
***************************************************************************************************************************
1 #include<iostream> 2 #include<string> 3 #include<cstring> 4 #include<cstdio> 5 #include<cmath> 6 #include<algorithm> 7 #define inf 0x7fffffff 8 using namespace std; 9 int a[100011],sum[201001]; 10 int que[201001]; 11 int cas,n,k; 12 int st,en,result; 13 void solve() 14 { 15 int head=1,tail=0; 16 result=-inf; 17 st=inf; 18 int it; 19 for(it=1;it<=n+k;it++) 20 { 21 while(head<=tail&&sum[it-1]<sum[que[tail]])//不满足条件,从尾部弹出 22 tail--; 23 while(head<=tail&&que[head]<it-k)//如果超出范围,从顶部弹出 24 head++; 25 tail++; 26 que[tail]=it-1;//此处压值时有技巧 27 if(sum[it]-sum[que[head]]>result)//每次更新极优值 28 { 29 result=sum[it]-sum[que[head]]; 30 st=que[head]+1; 31 en=it; 32 } 33 } 34 if(en>n) 35 en-=n; 36 } 37 int main() 38 { 39 int i,j; 40 scanf("%d",&cas); 41 while(cas--) 42 { 43 sum[0]=0; 44 scanf("%d %d",&n,&k); 45 for(i=1;i<=n;i++) 46 { 47 scanf("%d",&a[i]); 48 sum[i]=sum[i-1]+a[i]; 49 } 50 for(i=n+1;i<=n+k;i++) 51 sum[i]=sum[i-1]+a[i-n]; 52 solve(); 53 printf("%d %d %d ",result,st,en); 54 55 } 56 }