• lesson2-cnn-fastai


    https://www.bilibili.com/video/av10156946/index_4.html#page=4

    from IPython.display import FileLink
    FileLink('文件位置')
    --- 建立连接,将文件从服务器下载到电脑

    import numpy as np
    x=np.array([1,2,3,5,6,7,8,9])
    np.clip(x,3,8)
    Out[88]:
    array([3, 3, 3, 5, 6, 7, 8, 8])

    Elitic-第一家深度学习用于医疗,肺癌,真正难点不是技术而是现实问题,比如ct图片太大,如何让imagenet识别黑白模式,而网络代码差不多一样

    可视化的重要性:
    寻找对焦边缘-对角线的过滤器
    寻找渐变色的过滤器
    找寻圆形、边角、眼睛。。

    Gobor filters

    why finetuning:imagenet等已经学到了一些特征

    从where一层开始微调:自己实验

    how让激活向量处于正确的范围内:Xavier Initialization泽维尔初始化,nin和nout分别为当前权重矩阵的输入神经元个数和输出神经元个数,得到当前矩阵的标准差

    lesson2代码:
    loss导数:显示当权重改变时得到的值的变化
    深度学习中不存在局部最小值,因为参数太多,不是三维而是上亿;局部最小值是对随机梯度下降中不发继续优化
    如果倒数未知?:not worry,现代神经网络库都可以内部自动符号微分,只需要告诉它架构

    深度学习中总是可以存在参数继续优化下去的 Sequential([Dense(输入的数,activation='softmax',input_shape=(输出的个数,))]) 一个输入,两个输出

    狗和骨头与猫和狗共同出现的概率,前者更高 - imganet

    bcolz:保存numpy数组快几乎不耗内存

    VGG:224*224大小输入 notebook中: ??get_data ~ 就会展示函数细节,连接不同的batch

    RMSprop:对SGD的一种微调

    深度学习在矩阵从输入开始一步步所做的事情:在激活层进行非线性操作,

    model.addpop删除summary 

    ??vgg.finetune(batches)~细节~就是model.pop->model.add一个含有新分类数的Dense层-》mode.compile

    keras中使用batches时要用model.fit_generator(batches,...)

  • 相关阅读:
    CF1280G Kirchhoff's Current Loss【表达式解析,不等式】
    [AGC040C] Neither AB nor BA
    [AGC040B]Two Contests
    [ARC101E]Ribbons on Tree(容斥,dp)
    [GXOI/GZOI2019]旧词
    [SDOI2015]寻宝游戏
    半平面交初步
    [CF585E]Marbles
    [P5348]密码解锁
    NOIP2018 保卫王国
  • 原文地址:https://www.cnblogs.com/rosyYY/p/8798481.html
Copyright © 2020-2023  润新知