Description
给一个长度为 (n) 的数组 (a[1dots n]) ,满足 (sum_{m|x}a[x] = mu(m)),求 (a[m])。
(nle 10^{18}, mle 10^9, frac{n}{m}le10^9,ngeq m)
Solution
由另一种形式的莫比乌斯反演:
[egin{aligned}
a[m] &= sum_{m|x}mu(frac{x}{m})mu(x)\
&=sum_{i=1}^{frac{n}{m}}mu(i)mu(im)\
&=mu(m)sum_{i=1}^{lfloorfrac{n}{m}
floor}mu(i)^2[gcd(i, m) = 1]\
end{aligned}
]
后面那个 (sum) 就是在求 (1dots frac{n}{m}) 中与 (m) 互质且不能写成完全平方数的倍数的个数。
类似于 [中山市选2011]完全平方数,可以容斥求:
令 (N = lfloorfrac{n}{m} floor),
[egin{aligned}
a[m] &=mu(m)sum_{i=1}^{frac{n}{m}}mu(i)^2[gcd(i, m) = 1]\
&=mu(m)sum_{i=1}^{sqrt{N}}mu(i)sum_{j=1}^{lfloorfrac{N}{i^2}
floor}[gcd(i^2j,m)=1]\
&=mu(m)sum_{i=1}^{sqrt{N}}mu(i)[gcd(i,m)=1]sum_{j=1}^{lfloorfrac{N}{i^2}
floor}[gcd(j,m)=1]\
&=mu(m)sum_{i=1}^{sqrt{N}}mu(i)[gcd(i,m)=1]sum_{j=1}^{lfloorfrac{N}{i^2}
floor}sum_{d|gcd(j,m)}mu(d)\
&=mu(m)sum_{i=1}^{sqrt{N}}mu(i)[gcd(i,m)=1]sum_{d|m}mu(d)lfloorfrac{lfloorfrac{N}{i^2}
floor}{d}
floor
end{aligned}
]
然后就可以把 (m) 的所有约数处理出来,暴力算(复杂度上界为 (O(Tsqrt frac{n}{m} sqrt m)),实际后面的 (sqrt m) 跑不满)。
注意(mu)要筛到(sqrt N)复杂度才是对的(不然多一个根号)。
code
#include <bits/stdc++.h>
typedef long long LL;
typedef unsigned long long uLL;
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define MP(x, y) std::make_pair(x, y)
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define GO cerr << "GO" << endl;
using namespace std;
inline void proc_status()
{
ifstream t("/proc/self/status");
cerr << string(istreambuf_iterator<char>(t), istreambuf_iterator<char>()) << endl;
}
template<class T> inline T read()
{
register T x(0);
register char c;
register int f(1);
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c xor 48), isdigit(c = getchar()));
return x * f;
}
template<typename T> inline bool chkmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
const int maxN = 1e5;
bool vis[maxN + 1];
vector<int> prime;
int mu[maxN + 1];
LL n, m;
void Init()
{
mu[1] = 1;
for (int i = 2; i <= maxN; ++i)
{
if (!vis[i])
{
prime.push_back(i);
mu[i] = -1;
}
for (int j = 0; j < SZ(prime) and prime[j] * i <= maxN; ++j)
{
vis[prime[j] * i] = 1;
if (i % prime[j] == 0)
break;
else
mu[i * prime[j]] = -mu[i];
}
}
}
int Mu(LL M)
{
if (M <= maxN) return mu[M];
//GO;
int cnt = 0;
for (LL i = 2; i * i <= M; ++i)
if (M % i == 0)
{
M /= i;
cnt++;
if (M % i == 0)
return 0;
}
if (M != 1) cnt++;
return (cnt & 1) ? -1 : 1;
}
vector<pair<LL, int> > p;
LL calc(LL i)
{
LL ans(0);
for (int l = 0; l < SZ(p); ++l)
ans += (LL)p[l].second * (((n / m) / (i * i)) / p[l].first);
return ans;
}
void GetP(LL m)
{
p.clear();
for (LL d = 1; d * d <= m; ++d)
if (m % d == 0)
{
p.push_back(MP(d, Mu(d)));
if (m / d == d) continue;
p.push_back(MP(m / d, Mu(m / d)));
}
}
void Solve()
{
int T = read<int>();
while (T--)
{
n = read<LL>(), m = read<LL>();
GetP(m);
LL ans(0);
for (LL i = 1; i * i <= (n / m); ++i)
if (__gcd((LL)i, m) == 1)
ans += Mu(i) * calc(i);
ans *= Mu(m);
printf("%lld
", ans);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
Init();
Solve();
return 0;
}