• readzip_add_maxL2


    #!/usr/bin/env python
    import os
    import numpy as np
    import py7zr
    import shutil
    import pandas as pd
    import time
    
    #处理7Z分笔数据
    
    path = r'G:datas of status	ick-by-tick trade'#数据文件存放位置
    pathsave = 'G:\datas of status\python codes\'#设定临时文件存放位置
    
    listM = np.array(os.listdir(path))  #获取月文件夹
    print(listM)
    listM=np.char.add(path + "\",listM)#获取月文件夹路径
    
    
    def fun_time_l2(a,b):
        if float(a)<=float(b) :
            return 1
        else:
            return 0
    
    def read_files(filename):#读文件内容
        print(filename)
        with open(filename, "r") as f:
            df1 = pd.DataFrame(f.readlines())
    
    
            index = df1.loc[(df1[0].str.contains("find"))].index
            if index.isnull :
                df1 = df1.drop(index= index)
            #print(df1[13870:13890])
    
            df1 = pd.DataFrame(df1[0].str.strip())
            #print(df1)
            df1 = pd.DataFrame(df1[0].str.split("	",expand = True))
            #print(df1[1].str.strip())
            #print(df1[2].str.strip())
            #print(df1[1].astype("int")*df1[2].astype("int"))
    
            df1[3] = df1[1].astype("int")*df1[2].astype("int")
            df1.columns = ["time","price","vol","amount"]
            vol_t = abs(df1["vol"].astype("long")).sum()
            amount_t = abs(df1["amount"].astype("long")).sum()
    
            df_f_xiao = df1[(df1["amount"].astype("int") <0)&((df1["amount"].astype("int") > -40000) )]
            df_f_zhong = df1[(df1["amount"].astype("int") <=  -40000)&((df1["amount"].astype("int") > -200000) )]
            df_f_da = df1[(df1["amount"].astype("int") <=  - 200000)&((df1["amount"].astype("int") > -1000000) )]
            df_f_te_da = df1[(df1["amount"].astype("int") <=  - 1000000)]
    
            f_xiao = df_f_xiao["amount"].astype("long").sum()
            f_zhong = df_f_zhong["amount"].astype("long").sum()
            f_da = df_f_da["amount"].astype("long").sum()
            f_te_da = df_f_te_da["amount"].astype("long").sum()
    
            df_z_xiao = df1[(df1["amount"].astype("int") > 0) & ((df1["amount"].astype("int") < 40000))]
            df_z_zhong = df1[(df1["amount"].astype("int") >= 40000) & ((df1["amount"].astype("int") < 200000))]
            df_z_da = df1[(df1["amount"].astype("int") >=  200000) & ((df1["amount"].astype("int") < 1000000))]
            df_z_te_da = df1[(df1["amount"].astype("int") >= 1000000)]
    
            z_xiao = df_z_xiao["amount"].astype("long").sum()
            z_zhong = df_z_zhong["amount"].astype("long").sum()
            z_da = df_z_da["amount"].astype("long").sum()
            z_te_da = df_z_te_da["amount"].astype("long").sum()
    
    
            #add 增加计算最小值
    
            min_L = df1["price"].astype("int").min()
            sum_V = abs(df1["vol"].astype("int")).sum()
            min_2 = min_L * 1.02
    
            df_min_2 = df1[ (df1["price"].astype("int") < min_2)]
    
            sum_min_2_v = abs(df_min_2["vol"].astype("long")).sum()
            re_min_L2 = abs(sum_min_2_v)/sum_V*100
    
            #add time
            df_time_all = pd.DataFrame()
            df_time_all["time"] = df1["time"].str[:-2]
            df_time_all["price"] = df1["price"]
    
            df_time_all_only =df_time_all.drop_duplicates(subset=['time'],keep='first',inplace=False)
            df_time_all_only = df_time_all_only.reset_index(drop = True)
            for time_do in df_time_all_only["time"]:
                df_time_t = df_time_all[df_time_all["time"] == time_do]
                df_time_all_only.loc[df_time_all_only["time"] == time_do,"price"] = df_time_t["price"].min()
    
            df_time_all_only["add_times"] =df_time_all_only["price"].apply(lambda x :fun_time_l2(x,min_2))
            time_l2 = df_time_all_only["add_times"].sum()
            #print()
    
            #print(re_min_L2)
    
    
    
            #print(sum_V)
            #sum_V = abs(df1[2]).sum()
            #min_2 = min_L * 1.02
            #print(min_2)
    
            #print(sum_V)
    
    
            '''
            print(vol_t)
            print(amount_t)
    
            print(f_xiao)
            print(f_zhong)
            print(f_da )
            print(f_te_da)
            print(z_xiao)
            print(z_zhong)
            print(z_da )
            print(z_te_da)
            '''
            list_return = [vol_t,amount_t,z_xiao,z_zhong,z_da,z_te_da,f_xiao,f_zhong,f_da,f_te_da,re_min_L2,time_l2]
            return list_return
    
    
    
    
    
    #tempname=r'G:\datas of status\python codes\20200428\SH600000.txt'
    #read_files(tempname)
    
    
    
    
    def read_dirs(savedir):#读文件夹
        files=np.array(os.listdir(savedir))
        file_names = np.char.add(savedir + "\",files)
        listdir_return = []
    
    
        for file in file_names:
            (filepath, tempfilename) = os.path.split(file)
            (filename, extension) = os.path.splitext(tempfilename)
    
            if not os.path.getsize(file):#判断文件大小是否为0
                print("file siz = 0")
                print(file)
            else:
                list_t = read_files(file)
                list_t.insert(0,filename)
                listdir_return.append(list_t)
    
        #print(listdir_return)
        npM = pd.DataFrame(listdir_return)
        npM.columns = ["name","vol","amount","z_xiao","z_zhong","z_da","z_te_da","f_xiao","f_zhong","f_da","f_te_da","re_min_L2","time_l2"]
        return npM
        #print(npM)
    
    def extract_files(filename):#提出7Z文件
        with py7zr.SevenZipFile(filename, 'r') as archive:
            allfiles = archive.getnames()#获取7Z文件内的子文件名
            #print(allfiles)
            tempdir = allfiles[0].split("/")[0]#取7Z文件内文件夹名称
            #print(tempdir)
            savedir =pathsave + str(tempdir)
            #print(pathsave)
            if os.path.exists(savedir):
                shutil.rmtree(savedir)#删除同名文件夹
            os.mkdir(savedir)#重建文件夹
            #archive.extract(pathsave,allfiles[0:3])#解压到文件夹
            archive.extractall(pathsave)#解压到文件夹
            #print(archive.extractall())
            pdM2 = read_dirs(savedir)
    
            shutil.rmtree(savedir)
            pdM2.insert(1,"date",tempdir,allow_duplicates=False)
            #print(pdM2)
            return pdM2
    
    
    
    
    
    def do_work(listD):
        pdM_all = pd.DataFrame(
            columns=["name", "date", "vol", "amount", "z_xiao", "z_zhong", "z_da", "z_te_da", "f_xiao", "f_zhong", "f_da",
                     "f_te_da","re_min_L2","time_l2"])
        for filename in listD:
            #filename = listD[0]
            print("=========")
            print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
            pdD_t = extract_files(filename)
            #print(pdD_t["date"][0])
            save_dfile = pathsave + "\" + "everyday_data" + "\" + pdD_t["date"][0] + ".csv"
            #print(save_dfile)
    
            pdD_t = pdD_t.sort_values(by=['time_l2'], ascending=True)
            pdD_t.to_csv(save_dfile,sep=",",index=False,header=True)
    
    
            pdM_all = pdM_all.append(pdD_t)
    
            print(filename)
        #print(pdM_all)
        save_file = pathsave + pdM_all["date"][0].str[0:6] + ".csv"
        save_file = save_file.reset_index(drop = True)
        print(save_file[0])
        #df.to_csv(‘/opt/births1880.csv’, index=False, header=False
    
        #pdM_all = pdM_all.sort_values(by=['re_min_L2'], ascending=True)
    
        pdM_all.to_csv(save_file[0],sep=",",index=False,header=True)
    
    
    
    
    def start_work():
        m = 0  # 开始处理第几个文件夹(1~16,16=202004,15=202003)
        do_num = 1
        for n in range(do_num):
    
            i = m - n #处理第几个文件夹(1~16)
            print(listM[i])
            listD = np.array(os.listdir(listM[i]))#获取一个文件夹下所有日文件全路径
    
            print(listD)
            listD = np.char.add(listM[i] + "\",listD)#获取日文件全名
    
            print(listD)
            do_work(listD)
            print(i)
    start_work()
    #以下为单位处理一天的数据
    def do_one_day():
        tempdir = "20200718"#某天数据已解压的文件夹
        savedir = pathsave + tempdir
    
        pdM2 = read_dirs(savedir)
    
        pdM2.insert(1, "date", tempdir, allow_duplicates=False)
    
    
        save_dfile = pathsave + "\" + "everyday_data" + "\" + tempdir + ".csv"
        #save_dfile = pathsave + "\" + "everyday_data" + "\" + "20200710" + ".csv"
        # print(save_dfile)
        pdM2 = pdM2.sort_values(by=['time_l2'],ascending=True)
        pdM2.to_csv(save_dfile, sep=",", index=False, header=True)
    
    
    
    #do_one_day()
    
    
    def do_one_file():
        file_name = "G:\datas of status\python codes\20200714\SH600000.txt"
        print(read_files(file_name))
    
    
    #do_one_file()
    

      单线程,计算时间部分还要优化

  • 相关阅读:
    方法
    逻辑运算符/三元运算符/Scanner
    多线程线程状态和案例演示
    实现多线程的两种方式
    初识多线程
    IO流一些问题的总结
    IO流—其他流
    厦门Android开发三年,工资不到1w,敢问路在何方?
    二本渣渣考研失败,幸得知乎内推,成功拿下Android开发offer!
    2020Android面试心得,已拿到offer
  • 原文地址:https://www.cnblogs.com/rongye/p/13338556.html
Copyright © 2020-2023  润新知