• RDD、DataFrame和DataSet


    简述

    RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同:DataFrame多了数据的结构信息,即schema。RDD是分布式的 Java对象的集合。DataFrame是分布式的Row对象的集合。

    作者:jacksu来源:简书|2016-03-21 10:40
     

    RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。

    RDD和DataFrame

    RDD-DataFrame

    上图直观地体现了DataFrame和RDD的区别。左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解 Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。RDD是分布式的 Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。

    提升执行效率

    RDD API是函数式的,强调不变性,在大部分场景下倾向于创建新对象而不是修改老对象。这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运行期倾向于创建大量临时对象,对GC造成压力。在现有RDD API的基础之上,我们固然可以利用mapPartitions方法来重载RDD单个分片内的数据创建方式,用复用可变对象的方式来减小对象分配和GC的开销,但这牺牲了代码的可读性,而且要求开发者对Spark运行时机制有一定的了解,门槛较高。另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。利用 DataFrame API进行开发,可以免费地享受到这些优化效果。

    减少数据读取

    分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。

    上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。

    对于一些“智能”数据格 式,Spark SQL还可以根据数据文件中附带的统计信息来进行剪枝。简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等 一些基本的统计信息。当统计信息表名某一数据段肯定不包括符合查询条件的目标数据时,该数据段就可以直接跳过(例如某整数列a某段的最大值为100,而查询条件要求a > 200)。

    此外,Spark SQL也可以充分利用RCFile、ORC、Parquet等列式存储格式的优势,仅扫描查询真正涉及的列,忽略其余列的数据。

    执行优化

    人口数据分析示例

    为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter 下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

    得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。最右侧的物理执行计划中Filter之所以消失不见,就是因为溶入了用于执行最终的读取操作的表扫描节点内。

    对于普通开发者而言,查询优化 器的意义在于,即便是经验并不丰富的程序员写出的次优的查询,也可以被尽量转换为高效的形式予以执行。

    RDD和DataSet

    • DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。
    • DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为SparkSQl类型,然而RDD依赖于运行时反射机制。

    通过上面两点,DataSet的性能比RDD的要好很多。

    DataFrame和DataSet

    Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:

    DataSet可以在编译时检查类型

    并且是面向对象的编程接口。用wordcount举例:

    //DataFrame
    
    // Load a text file and interpret each line as a java.lang.String
    val ds = sqlContext.read.text("/home/spark/1.6/lines").as[String]
    val result = ds
      .flatMap(_.split(" "))               // Split on whitespace
      .filter(_ != "")                     // Filter empty words
      .toDF()                              // Convert to DataFrame to perform aggregation / sorting
      .groupBy($"value")                   // Count number of occurences of each word
      .agg(count("*") as "numOccurances")
      .orderBy($"numOccurances" desc)      // Show most common words first

    后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。

    //DataSet,完全使用scala编程,不要切换到DataFrame
    
    val wordCount = 
      ds.flatMap(_.split(" "))
        .filter(_ != "")
        .groupBy(_.toLowerCase()) // Instead of grouping on a column expression (i.e. $"value") we pass a lambda function
        .count()

    DataFrame和DataSet可以相互转化, df.as[ElementType] 这样可以把DataFrame转化为DataSet, ds.toDF() 这样可以把DataSet转化为DataFrame。

  • 相关阅读:
    [Vijos] 天才的记忆
    [Vijos] 河蟹王国
    [Vijos] SuperBrother打鼹鼠
    [Vijos] 弱弱的战壕
    [洛谷P3792] 由乃与大母神原型和偶像崇拜
    【模板】乘法逆元
    [USACO13NOV]空荡荡的摊位Empty Stalls
    [USACO08OPEN]牛的车Cow Cars
    [SCOI2005]扫雷
    [USACO16OPEN]关闭农场Closing the Farm_Silver
  • 原文地址:https://www.cnblogs.com/rocky-AGE-24/p/7526286.html
Copyright © 2020-2023  润新知