• Geometric Shapes (poj3449多边形相交)


    题意:给你一些多边形的点,判断每个多边形和那些多边形相交,编号按照字典序输出

    思路:枚举每个多边形的每条边看是否相交,这里的相交是包括端点的,关键是给你正方形不相邻两个点求另外两个点怎么求,长方形给你3个点求第四个点怎么求?


    因为对角线的交点为两条对角线的中点,所以 

    x0 + x2 =  x1 + x3

    y0 + y2 =  y1 + y3

    可以证明分割的这几个小三角形是全等的所以有

    x1 - x3 = y2 - y1

    y1 - y3 = x2 - x0

    根据这几个式子可以推出 另外两个点的坐标

    剩下的就是枚举每两个多边形的每条边是否相交

    就是输入输出格式要细心点

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    struct Point
    {
        double x,y;
        Point(double x = 0,double y = 0):x(x),y(y){}
    };
    typedef Point Vector;
    Vector operator + (Vector a, Vector b) { return Vector(a.x+b.x,a.y+b.y) ;}
    Vector operator - (Vector a, Vector b) { return Vector(a.x-b.x,a.y-b.y) ;}
    Vector operator * (Vector a,double p) { return Vector(a.x*p,a.y*p) ;}
    Vector operator / (Vector a,double p) { return Vector(a.x/p,a.y/p) ;}
    double Dot(Vector a,Vector b) { return a.x*b.x + a.y*b.y ;}
    double Length(Vector a) { return sqrt(Dot(a,a)) ;}
    double Cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x ;}
    const double eps = 1e-8;
    int dcmp(double x)
    {
        if(fabs(x) < eps) return 0;
        else return x < 0 ? -1 : 1;
    }
    bool operator == (Point a,Point b)
    {
        return dcmp(a.x-b.x) == 0&& dcmp(a.y-b.y) == 0;
    }
    bool operator < (Point a,Point b)
    {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    
    bool Onsegment(Point p,Point a,Point b)
    {
        return dcmp(Cross(b-a,p-a)) == 0 && dcmp(Dot(b-p,a-p)) < 0 || (p == a) || (p == b);
    }
    
    bool OnLine(Point p,Point a,Point b)
    {
        return fabs(Cross(p-a,a-b)) / Length(b-a);
    }
    
    bool Segmentsection(Point a,Point b,Point c,Point d)
    {
        double d1 = Cross(b-a,c-a),d2 = Cross(b-a,d-a),d3 = Cross(d-c,a-c),d4 = Cross(d-c,b-c);
        if(dcmp(d1)*dcmp(d2) < 0 && dcmp(d3)*dcmp(d4) < 0) return true;
        else if(dcmp(d1) == 0 && Onsegment(c,a,b) ) return true;
        else if(dcmp(d2) == 0 && Onsegment(d,a,b) ) return true;
        else if(dcmp(d3) == 0 && Onsegment(a,c,d) ) return true;
        else if(dcmp(d4) == 0 && Onsegment(b,c,d) ) return true;
        else return false;
    }
    
    
    Point Segment(Point p,Vector v,Point q,Vector w)
    {
        Vector u = p-q;
        double t = Cross(w,u) / Cross(v,w);
        return p + v*t;
    }
    
    double Max(double a,double b)
    {
        return a > b ? a : b;
    }
    struct Line
    {
        Point s,e;
        Line(Point s = 0,Point e = 0) :s(s),e(e){}
    };
    
    struct polygon
    {
        Point p[30];
        int num;
    }poly[50];
    
    bool Ispoly(polygon a,polygon b)
    {
        if(a.num != 0 && b.num != 0)
        {
             for(int i = 0; i < a.num; i++)
            {
                for(int j = 0; j < b.num; j++)
                {
                    if( Segmentsection(a.p[i],a.p[(i+1)%a.num],b.p[j],b.p[(j+1)%b.num]) )
                        return true;
                }
            }
        }
        return false;
    }
    int main()
    {
        char str[10],strr[20];
        memset(poly,0,sizeof(poly));
        while(scanf("%s",str) != EOF)
        {
            if(strcmp(str,".") == 0)
            {
                break;
            }
            if(strcmp(str,"-") == 0)
            {
                char c[30];
                int k,j;
                for(int i = 0; i < 26; i++)
                {
                    k = 0;
                    for(j = 0; j < 26; j++)
                    {
                        if( i != j && Ispoly(poly[i],poly[j]))
                        {
                            c[k++] = j + 'A';
                        }
                    }
                    if(k == 0 && poly[i].num != 0)
                    {
                        printf("%c has no intersections
    ",i+'A');
                    }
                    else if(poly[i].num != 0)
                    {
                        printf("%c intersects with %c",i+'A',c[0]);
                        if(k == 2)
                        {
                            printf(" and %c",c[1]);
                        }
                        else if(k > 2)
                        {
                            for(int m = 1; m < k-1; m++)
                            {
                                printf(", %c",c[m]);
                            }
                            printf(", and %c",c[k-1]);
                        }
                        printf("
    ");
                    }
                }
                printf("
    ");
                memset(poly,0,sizeof(poly));
                continue;
            }
            scanf("%s",strr);
            int temp = str[0]-'A';
            double x,y;
            if(strcmp(strr,"square") == 0)
            {
                poly[temp].num = 4;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[0].x = x, poly[temp].p[0].y = y;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[2].x = x, poly[temp].p[2].y = y;
    
                poly[temp].p[1].x = (poly[temp].p[0].x+poly[temp].p[2].x +poly[temp].p[2].y-poly[temp].p[0].y)/2;
                poly[temp].p[1].y = (poly[temp].p[0].y+poly[temp].p[2].y+poly[temp].p[0].x-poly[temp].p[2].x)/2;
                poly[temp].p[3].x = (poly[temp].p[0].x+poly[temp].p[2].x +poly[temp].p[0].y-poly[temp].p[2].y)/2;
                poly[temp].p[3].y = (poly[temp].p[0].y+poly[temp].p[2].y+poly[temp].p[2].x-poly[temp].p[0].x)/2;
    
            }
            else if(strcmp(strr,"rectangle") == 0)
            {
                poly[temp].num = 4;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[0].x = x, poly[temp].p[0].y = y;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[1].x = x, poly[temp].p[1].y = y;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[2].x = x, poly[temp].p[2].y = y;
                poly[temp].p[3].x = (poly[temp].p[0].x + poly[temp].p[2].x - poly[temp].p[1].x);
                poly[temp].p[3].y = ( poly[temp].p[2].y -  poly[temp].p[1].y +  poly[temp].p[0].y);
            }
            else if(strcmp(strr,"line") == 0)
            {
                poly[temp].num = 2;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[0].x = x, poly[temp].p[0].y = y;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[1].x = x, poly[temp].p[1].y = y;
            }
            else if(strcmp(strr,"polygon") == 0)
            {
                int n;
                scanf("%d",&n);
                poly[temp].num = n;
                for(int i = 0; i < n; i++)
                {
                    scanf(" (%lf,%lf)",&x,&y);
                    poly[temp].p[i].x = x, poly[temp].p[i].y = y;
                }
            }
            else
             {
    
                poly[temp].num = 3;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[0].x = x, poly[temp].p[0].y = y;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[1].x = x, poly[temp].p[1].y = y;
                scanf(" (%lf,%lf)",&x,&y);
                poly[temp].p[2].x = x, poly[temp].p[2].y = y;
            }
        }
        return 0;
    }
    


  • 相关阅读:
    Javascript笔记01:javascript入门介绍
    css笔记19:浮动的案例
    css笔记17:盒子模型加强版的案例
    css笔记16:盒子模型的入门案例
    css笔记15:盒子模型
    css笔记14:css文件之间可以相互引用
    HDU 1203 I NEED A OFFER!
    HDU 2955 Robberies
    HDU 2602 Bone Collector
    HDU 2546 饭卡
  • 原文地址:https://www.cnblogs.com/riskyer/p/3356199.html
Copyright © 2020-2023  润新知