• TensorFlow基础9——tensorboard显示网络结构


    import tensorflow as tf 
    import numpy as np 
    import matplotlib.pyplot as plt 
    
    def add_layer(input,in_size,out_size,activation_function=None):
        with tf.name_scope('layer'):
            with tf.name_scope('Weights'):
                Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='w')
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(tf.matmul(input,Weights),biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    x_data = np.linspace(-1,1,300)[:,np.newaxis]
    noise = np.random.normal(0,0.05,x_data.shape)#噪音
    y_data = np.square(x_data)-0.5+noise
    
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32,[None,1],name='x_input')
        ys = tf.placeholder(tf.float32,[None,1],name='y_input')
    
    #add hidden layer
    l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
    #add output layer
    predition = add_layer(l1,10,1,activation_function=None)
    
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-predition),reduction_indices=[1]))
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    init = tf.initialize_all_variables()
    sess = tf.Session()
    merged = tf.summary.merge_all()
    writer = tf.summary.FileWriter("D:/logs/",sess.graph) #目录结构尽量简单,复杂了容易出现找不到文件,原因不清楚
    sess.run(init)

    执行后,在命令行中输入,

    一定要先到logs文件夹所在目录下,在输入下面命令,不然会找不到

    tensorboard --logdir=D:/logs/   #文件目录和之前里的保持一致

    执行结果:

    打开浏览器:

      输入显示的网址

  • 相关阅读:
    光遇————墓土(补充)蜡烛收集
    光遇————雨林
    每日光遇日记
    光遇————墓土
    光遇————云野超级不详细的蜡烛收集
    光遇————晨岛超级详细的蜡烛收集
    高精度
    HDU 1002: A + B Problem II (大数加法)
    HDU 1018:Big Number (位数递推公式)
    D2. Remove the Substring (hard version) (KMP-next数组 ) ( Codeforces Round #579 (Div. 3) )
  • 原文地址:https://www.cnblogs.com/renzhong/p/7358124.html
Copyright © 2020-2023  润新知