• 2019/7/31 LCA(最近公共祖先) (1)


       LCA(最近公共祖先)

        LCA,Lowest Common Ancetors,即最近公共祖先。

    百度百科定义:“对于有根树T的两个结点u、v,最近公共祖先  表示一个结点x,满足x是u、v的祖先且x的深度尽可能大。

      什么是LCA?

         对于一些朋友来说百度百科式的介绍不是很友好,我们在这里形象实际地说明一下什么是LCA。

         这是一颗树(原谅我手残)

                                           

          对于u:结点6,v:结点11,根据定义,我们不难找出u,v各自的祖先(父结点)。(顺序由深至浅)

           u(结点6):结点3(深度3),结点2(深度2),结点1(深度1)。

           v(结点11):结点9(深度4),结点7(深度3),结点2(深度2),结点1(深度1)。

         基于LCA定义中“公共”一词,u、v的公共祖先为结点2、结点1。而其中深度最深的结点2即为u(结点6)与v(结点11)的LCA。

         而从图上来看,从u/v结点到根结点路径上的所有点都为u/v结点的祖先,而两条路径第一次交汇处的结点即为u与v的LCA。

      如何求任意两点间LCA?

         主流算法共有4种:

    • 倍增

    • Tarjan

    • RMQ(ST表+欧拉序列)

    • 树链剖分

         其中倍增法较为基础,Tarjan较难理解,RMQ较少见但容易理解,树剖在下并不会(以后再更新绝对不鸽)。

         今天我们来研究RMQ(ST表+欧拉序列)求LCA。

      RMQ(ST表+欧拉序列)求LCA

         前置知识:

    • ST表(DP)

    • DFS

    • 链式前向星

      梗概:此种方法是通过求出给定树的欧拉序列,通过构造ST表进行给定两点间区间RMQ查询,求出给定两点LCA。

      时间复杂度:预处理O(n^2),询问O(1)。

      1.欧拉序列

      定义:树的欧拉序是对树进行DFS的一种序列。 有两种形式: 1、在每个结点进和出都加进序列。 2、只要到达每一个结点就把他加进序列。

      第一种欧拉序列用于树上求和等问题,我们暂且不讲。后一种则是用于求两点LCA等问题。

      还是这棵树(原谅我手残)

                                                   

         对这棵树进行DFS,能够得到对于这棵树的欧拉序列。

                     

                              树上路径                                                               实际访问路径

      欧拉序列:1->2->7->8->7->10->13->10->12->10->7->9->11->9->7->2->3->6->3->5->3->4->3->2->1

      (值得注意的是由于DFS开始方向不同,欧拉序列整体顺序可能相反)

      性质:我们可以发现在欧拉序列中,从树上一点u第一次出现到树上另一点v第一次出现需要遍历u结点所有子树,并回到u结点,进行回溯,遍历u->v树上路径。

      而对于这两点的LCA,不难发现LCA一定位于u->v树上路径上且LCA一定是树上路径中最浅结点。由此可以推出,在某颗树的欧拉序列中,给定点u与给定点v的LCA是u在欧拉序列中第一次出现位置与v在欧拉序列中第一次出现位置间形成的区间中深度最浅的点。

      (eg.对于上图树中结点6与结点11,其在欧拉序列中形成区间为11->9->7->2->3->6,深度分别为5->4->3->2->3->4,LCA即为最浅点结点2(深度2)。)

      P.S.  实际实现时注意两结点第一次出现位置的大小,可能需要交换顺序。 

      2.ST表

      原理我们暂且不讲,不了解的同学可以先将它理解为一种快速查找给定区间最大/最小值(区间RMQ问题)的算法。

      在求LCA的过程中,我们所需的ST表与普通ST表略微不同。因为我们在查找最小值时还需要查找此最小值对应的结点编号,以此直接求出LCA。

      此问题的解决方法也比较简单,设定一个rec[ ]数组,使其在st表结构数组st[ ]更新时同步更新,查找时比较数组st[ ]得到某一结点深度最浅并返回此结点对应数组rec[ ]中的结点编号。

      至此,我们对此算法原理研究结束。

      3.代码实现

      上代码!

      声明部分:

     1 #include <iostream>
     2 #include <cstdio>//标准输入输出
     3 #include <cmath>//用于ST表中求解log
     4 using namespace std;
     5 int n,m,s,cnt,tot;// s:根结点,cnt:链式前向星,tot:总欧拉序列长度
     6 int head[1000005];//链式前向星不解释
     7 int depth[1000005];//记录当前结点深度
     8 int num[1000005];//记录结点第一次出现位置
     9 int rec[2000005][20];//查询数组
    10 int st[2000005][20];//ST表结构数组
    11 int euler[1000005];//欧拉序列数组
    12 //int dp[1000005];求结点深度数组 
    13 //int wd[1000005];求某一深度树的宽度数组

      链式前向星存边:

     1 struct edge
     2 {
     3     int nxt;
     4     int to;
     5     //int dis;边权值//在本示例中默认边权为1
     6 }e[4000005];//建议开4倍数组
     7 void add(int x,int y/*,int d*/)
     8 {
     9     e[++cnt].nxt=head[x];
    10     //e[cnt].dis=d;
    11     e[cnt].to=y;
    12     head[x]=cnt;
    13 }    

      DFS:

     1 void dfs(int x,int dep)//x为当前结点,dep为当前结点深度
     2 {
     3 
     4     num[x]=++tot;//记录x结点第一次出现位置
     5     depth[tot]=dep;//对应深度
     6     euler[tot]=x;//记录序列
     7     //dp[x]=max(dp[x],depth[tot]); //求某一结点深度
     8     //cout<<"#访问结点:"<<x<<"   depth数组:"<<depth[tot]<<endl;
     9     for(int i=head[x];i;i=e[i].nxt)//遍历边
    10     {
    11         int p=e[i].to;
    12         if(num[p]==0)//p结点如未出现
    13         {
    14             dfs(p,dep+1);//遍历
    15             euler[++tot]=x;//回溯后记录序列
    16             depth[tot]=dep;//记录对应深度
    17         }
    18     }
    19     return ;
    20 }

      ST表求RMQ:

     1 void RMQ(int N)//N:欧拉序列长度
     2 {
     3     for(int j=1;j<=(int)(log((double)N)/log(2.0));j++)
     4     {
     5         for(int i=1;i<=N;i++)
     6         {
     7             if(i+(1<<j)-1<=N)
     8             if(st[i][j-1]<st[i+(1<<(j-1))][j-1])//同步更新rec[ ]数组
     9                 st[i][j]=st[i][j-1],rec[i][j]=rec[i][j-1];
    10             else 
    11                 st[i][j]=st[i+(1<<(j-1))][j-1],rec[i][j]=rec[i+(1<<(j-1))][j-1];
    12         }
    13     }
    14 }
    15 
    16 int search(int l,int r)
    17 {
    18     int k=(int)(log((double)(r-l+1))/log(2.0));
    19     if(st[l][k]<st[r-(1<<k)+1][k])//比较后返回rec[ ]数组对应结点编号
    20     return rec[l][k];
    21     else
    22     return rec[r-(1<<k)+1][k];
    23 }

      主函数:

     1 int main()
     2 {
     3     cin>>n>>m>>s;
     4     for(int i=1;i<=n-1;i++)//读边
     5     {
     6         int a,b;
     7         scanf("%d %d",&a,&b);
     8         add(a,b);//无向图正反存边
     9         add(b,a);
    10     }
    11     dfs(s,1);//开始遍历
    12     for(int i=1;i<=tot;i++)//初始化
    13     {
    14         st[i][0]=depth[i],rec[i][0]=euler[i];
    15     }
    16     RMQ(tot);//构建ST表
    17     /*//接下来是不必要部分//当初死在了这里
    18     int dcnt=0,maxx=0;//dcnt:树的最大深度,maxx:树的最大宽度
    19     for(int i=1;i<=n;i++)
    20     {
    21         wd[dp[i]]++;//统计所有深度为dp[i]的结点求出当前深度的树宽度
    22     }
    23     for(int i=1;i<=n;i++)
    24     {
    25         if(wd[i]==0)
    26         {
    27             break;
    28         }
    29         dcnt++;//统计最大深度//笨方法
    30     }
    31     for(int i=1;i<=wcnt+1;i++)
    32     {
    33         maxx=max(maxx,wd[i]);//求最大宽度
    34     }
    35 36     */
    37     for(int i=1;i<=m;i++)//查询部分
    38     {
    39         int l,r,fg=0;//l:结点u,r:结点v,fg:交换标志
    40         scanf("%d %d",&l,&r);
    41         if(num[l]>num[r])//交换
    42         {
    43             swap(num[l],num[r]);
    44             fg=1;//交换后标记
    45         }
    46         printf("%d
    ",search(num[l],num[r]));//查询并输出
    47         if(fg==1)//交换回来!!!!!记得交换回来!!!!!//p.s.2019/7/29模拟赛爆0 R.I.P
    48         swap(num[l],num[r]);
    49     }
    50     return 0;
    51 }

      结语

      LCA问题较为常见,应至少掌握一种方法。

      拓展:

      此种思想也可用于求树(最大)宽度/深度,树上距离,三点LCA等问题。

      相关题目

      洛谷 P3379 【模板】最近公共祖先(LCA)

      洛谷 P3884  [JLOI2009]二叉树问题  

      洛谷 P4281 [AHOI2008]紧急集合 / 聚会(三点LCA)

      //暂时只想到这么多·········

      Q.E.D.(大雾)

      P.S.

      由于是萌新第一次撰写题解,在语言及思路等方面定会有不足之处,请大家多多包涵,也欢迎各位大佬指正。

      

       

      

      

      

       

  • 相关阅读:
    qt5.4.0在windows,32位下的编译, vs2010平台
    three.js
    关于齐次坐标的理解
    osg,vtk,ogre的区别
    BCS 字段显示格式化
    360安全卫士造成Sharepoint文档库”使用资源管理器打开“异常
    Event 8306 5021 5059 5057发布安全令牌时异常
    table新增一行并循环获取table内值
    封装HTML成APP
    footer页面最底端展示
  • 原文地址:https://www.cnblogs.com/randomaddress/p/11273861.html
Copyright © 2020-2023  润新知