• Solution -「LOJ #150」挑战多项式 ||「模板」多项式全家桶


    (mathcal{Description})

      Link.

      给定 (n) 次多项式 (F(x)),在模 (998244353) 意义下求

    [G(x)equivleft{left[1+lnleft(2+F(x)-F(0)-exp int frac{1}{sqrt{F(t)}} ext dt ight) ight]^k ight}'pmod{x^n} ]

    其中保证 (F(0)) 是模数的二次剩余,开根取模意义下较小常数项值。

      (nle10^5)

    (mathcal{Solution})

      先这样再那样,嗯。

      涉及到多项式 (exp)(ln),求逆,开根,求幂,积分求导,具体推导可以看 这里 哟~

    (mathcal{Code})

    /*~Rainybunny~*/
    
    #include <cstdio>
    #include <cassert>
    #include <cstdlib>
    #include <algorithm>
    
    #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
    #define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
    
    const int MAXL = 1 << 18, MOD = 998244353, INV2 = MOD + 1 >> 1;
    
    inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
    inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
    inline int mul( const long long a, const int b ) { return int( a * b % MOD ); }
    inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
    inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
    inline int mpow( int a, int b ) {
        int ret = 1;
        for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
        return ret;
    }
    
    namespace QResidue {
    
    /*
     * PolyOper::polySqrt() need this.
     * */
    
    int SQRI;
    
    struct Complex {
    	int x, y;
    	Complex(): x( 0 ), y( 0 ) {}
    	Complex( const int tx, const int ty ): x( tx ), y( ty ) {}
    	inline Complex operator * ( const Complex& c ) const {
    		return Complex( add( mul( x, c.x ), mul( SQRI, mul( y, c.y ) ) ),
    			add( mul( x, c.y ), mul( y, c.x ) ) );
    	}
    };
    
    inline bool isResidue( const int x ) { return mpow( x, MOD - 1 >> 1 ) == 1; }
    
    inline Complex cpow( Complex a, int b ) {
    	Complex ret( 1, 0 );
    	for ( ; b; a = a * a, b >>= 1 ) if ( b & 1 ) ret = ret * a;
    	return ret;
    }
    
    inline int residue( const int n ) {
    	if ( !n ) return 0;
    	if ( !isResidue( n ) ) return -1;
    	srand( 20120712 ); int a = rand() % MOD;
    	while ( !a || isResidue( sub( mul( a, a ), n ) ) ) a = rand() % MOD;
    	SQRI = sub( mul( a, a ), n );
    	int ret = cpow( Complex( a, 1 ), MOD + 1 >> 1 ).x;
        return ret < MOD - ret ? ret : MOD - ret;
    }
    
    } // namespace QResidue.
    
    namespace PolyOper {
    
    /* *
     * - call init() before any operation;
     * - for `poly(n,u,w)', w can't be u;
     * - for `poly(n,u,w)', it will only access u[0..n-1] and w[0..n-1];
     * - for `poly(n,u,w)', there's no need to clear w before calling them.
     * - remember that `n' is always 2^k.
     * */
    
    const int MG = 3;
    int inv[MAXL + 5], omega[20][MAXL];
    
    inline void init() {
        inv[1] = 1;
        rep ( i, 2, MAXL + 3 ) inv[i] = mul( MOD - MOD / i, inv[MOD % i] );
        rep ( i, 0, 17 ) {
            int* oi = omega[i];
            oi[0] = 1, oi[1] = mpow( MG, MOD - 1 >> i >> 1 );
            rep ( j, 2, ( 1 << i ) - 1 ) oi[j] = mul( oi[j - 1], oi[1] );
        }
    }
    
    inline void ntt( const int n, int* u, const int type ) {
        static int rev[MAXL]; rev[0] = 0;
        int lgn = 1; for ( ; 1 << lgn < n; ++lgn );
        rep ( i, 1, n - 1 ) rev[i] = rev[i >> 1] >> 1 | ( i & 1 ) << lgn >> 1;
        rep ( i, 1, n - 1 ) if ( i < rev[i] ) {
            u[i] ^= u[rev[i]] ^= u[i] ^= u[rev[i]];
        }
        for ( int i = 0, stp = 1; stp < n; ++i, stp <<= 1 ) {
            int* oi = omega[i];
            for ( int j = 0; j < n; j += stp << 1 ) {
                rep ( k, j, j + stp - 1 ) {
                    int ev = u[k], ov = mul( oi[k - j], u[k + stp] );
                    u[k] = add( ev, ov ), u[k + stp] = sub( ev, ov );
                }
            }
        }
        if ( !~type ) {
            int ivn = MOD - ( MOD - 1 ) / n;
            rep ( i, 0, n - 1 ) u[i] = mul( u[i], ivn );
            std::reverse( u + 1, u + n );
        }
    }
    
    inline void polyInv( const int n, const int* u, int* w ) {
        static int tmp[2][MAXL];
        if ( n == 1 ) return void( w[0] = mpow( u[0], MOD - 2 ) );
        polyInv( n >> 1, u, w );
        rep ( i, 0, ( n >> 1 ) - 1 ) tmp[0][i] = w[i], tmp[1][i] = u[i];
        rep ( i, n >> 1, n - 1 ) tmp[0][i] = 0, tmp[1][i] = u[i];
        rep ( i, n, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
        ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
        rep ( i, 0, ( n << 1 ) - 1 ) {
            tmp[0][i] = mul( tmp[0][i], sub( 2, mul( tmp[0][i], tmp[1][i] ) ) );
        }
        ntt( n << 1, tmp[0], -1 );
        rep ( i, 0, n - 1 ) w[i] = tmp[0][i];
    }
    
    inline void polyInt( const int n, const int* u, int* w ) {
        w[0] = 0;
        rep ( i, 1, n ) w[i] = mul( u[i - 1], inv[i] );
    }
    
    inline void polyDer( const int n, const int* u, int* w ) {
        w[n - 1] = 0;
        rep ( i, 0, n - 2 ) w[i] = mul( u[i + 1], i + 1 );
    }
    
    inline void polyLn( const int n, const int* u, int* w ) {
        static int tmp[2][MAXL]; assert( u[0] == 1 );
        polyDer( n, u, tmp[0] ), polyInv( n, u, tmp[1] );
        rep ( i, n, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
        ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
        rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = mul( tmp[0][i], tmp[1][i] );
        ntt( n << 1, tmp[0], -1 ), polyInt( n - 1, tmp[0], w );
    }
    
    inline void polyExp( const int n, const int* u, int* w ) {
        static int tmp[2][MAXL];
        if ( n == 1 ) return assert( !u[0] ), w[0] = 1, void();
        polyExp( n >> 1, u, w );
        rep ( i, 0, ( n >> 1 ) - 1 ) tmp[0][i] = w[i], tmp[1][i] = 0;
        rep ( i, n >> 1, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
        polyLn( n, tmp[0], tmp[1] ), tmp[1][0] = sub( tmp[1][0], 1 );
        rep ( i, 0, n - 1 ) tmp[1][i] = sub( u[i], tmp[1][i] );
        ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
        rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = mul( tmp[0][i], tmp[1][i] );
        ntt( n << 1, tmp[0], -1 );
        rep ( i, 0, n - 1 ) w[i] = tmp[0][i];
    }
    
    inline void polySqrt( const int n, const int* u, int* w ) {
        static int tmp[2][MAXL];
        if ( n == 1 ) return assert( ~( w[0] = QResidue::residue( u[0] ) ) );
        polySqrt( n >> 1, u, w ); rep ( i, n >> 1, n - 1 ) w[i] = 0;
        polyInv( n, w, tmp[0] );
        rep ( i, n, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
        rep ( i, 0, n - 1 ) tmp[1][i] = u[i];
        ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
        rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = mul( tmp[0][i], tmp[1][i] );
        ntt( n << 1, tmp[0], -1 );
        rep ( i, 0, n - 1 ) w[i] = mul( add( w[i], tmp[0][i] ), INV2 );
    }
    
    } // namespace PolyOper.
    
    /*** templates are above. ***/
    
    int n, k, tmpF[MAXL + 5], F[MAXL + 5], G[MAXL + 5];
    
    int main() {
        PolyOper::init();
        scanf( "%d %d", &n, &k ), ++n;
        rep ( i, 0, n - 1 ) scanf( "%d", &F[i] ), tmpF[i] = F[i];
        int len = 1; for ( ; len < n; len <<= 1 );
    
        PolyOper::polySqrt( len, F, G );
        PolyOper::polyInv( len, G, F );
        PolyOper::polyInt( len, F, G );
        PolyOper::polyExp( len, G, F );
        rep ( i, 0, len - 1 ) F[i] = sub( tmpF[i], F[i] );
        F[0] = sub( add( F[0], 2 ), tmpF[0] );
        PolyOper::polyLn( len, F, G );
        G[0] = add( G[0], 1 );
        PolyOper::polyLn( len, G, F );
        rep ( i, 0, len - 1 ) F[i] = mul( F[i], k );
        PolyOper::polyExp( len, F, G );
        PolyOper::polyDer( len, G, F );
    
        rep ( i, 0, n - 2 ) printf( "%d%c", F[i], i + 2 < n ? ' ' : '
    ' );
        return 0;
    }
    
    
  • 相关阅读:
    「luogu2350」[HAOI2012] 外星人
    「csp校内训练 20191030」解题报告
    「csp校内训练 20191025」解题报告
    「2019纪中集训Day23」解题报告
    「luogu3974」[TJOI2015] 组合数问题
    「csp校内训练 20191106」解题报告
    「csp校内训练 20191024」解题报告
    「NOI2019d2t1」弹跳
    「2019纪中集训Day21」解题报告
    「csp校内训练 20191104」解题报告
  • 原文地址:https://www.cnblogs.com/rainybunny/p/15005747.html
Copyright © 2020-2023  润新知