• 「2019纪中集训Day23」解题报告


    T1、矩阵乘法

    题目链接

    给定一个 \(n \times n \ (n \leq 500)\) 的矩阵 \((a_{i,j} \leq 10 ^ 9)\)\(q \ (q \leq 6 \times 10 ^ 5)\) 组询问,每次询问一个子矩阵的第 \(k\) 大元素 (保证存在)。

    \(Sol\)

    整体二分主席树,注意常数因子带来的影响;
    全场只有我一个常数怪 \(95\) 分。

    时间复杂度 \(O(q \log_2^2 n)\)

    \(Source\)

    //#pragma GCC optimize(2)
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    inline int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 505, Q = 60005;
    
    struct info {
        int id, x1, y1, x2, y2, k;
    } b[N * N + Q];
    int n, m, q, id[N * N + Q], tmp1[N * N + Q], tmp2[N * N + Q], pos[N * N], res[Q];
    int nn, mp[N * N];
    
    struct persistable_segment_tree {
        int sum[N * N * 11], c[N * N * 11][2], rt[N * N], tot;
        void clear() {
            tot = 0;
        }
        int new_node() {
            ++tot;
            sum[tot] = c[tot][0] = c[tot][1] = 0;
            return tot;
        }
        void modify(int pos, int tl, int tr, int pre, int &p) {
            p = new_node(), sum[p] = sum[pre];
            ++sum[p];
            if (tl == tr)
                return ;
            int mid = (tl + tr) >> 1;
            if (mid >= pos) {
                c[p][1] = c[pre][1];
                modify(pos, tl, mid, c[pre][0], c[p][0]);
            } else {
                c[p][0] = c[pre][0];
                modify(pos, mid + 1, tr, c[pre][1], c[p][1]);
            }
        }
        int query(int l, int r, int tl, int tr, int pre, int p) {
            if (l <= tl && tr <= r)
                return sum[p] - sum[pre];
            int mid = (tl + tr) >> 1;
            if (mid < l)
                return query(l, r, mid + 1, tr, c[pre][1], c[p][1]);
            if (mid >= r)
                return query(l, r, tl, mid, c[pre][0], c[p][0]);
            return query(l, r, tl, mid, c[pre][0], c[p][0]) +
                   query(l, r, mid + 1, tr, c[pre][1], c[p][1]);
        }
    } T;
    
    void binary_search(int l, int r, int s, int t) {
        if (l > r || s > t)
            return ;
        if (l == r) {
            for (int i = s; i <= t; ++i)
                if (b[id[i]].id)
                    res[b[id[i]].id] = mp[l];
            return ;
        }
        int mid = (l + r) >> 1, p1 = 0, p2 = 0, tot = 0;
        T.clear();
        for (int i = s; i <= t; ++i) {
            if (!b[id[i]].id) {
                if (b[id[i]].k <= mp[mid]) {
                    T.modify(b[id[i]].y1, 1, n, T.rt[tot], T.rt[tot + 1]);
                    tmp1[++p1] = id[i];
                    pos[++tot] = b[id[i]].x1;
                } else {
                    tmp2[++p2] = id[i];
                }
            } else {
                int x, y, w;
                x = std::lower_bound(pos + 1, pos + 1 + tot, b[id[i]].x1) - pos;
                y = std::upper_bound(pos + 1, pos + 1 + tot, b[id[i]].x2) - pos - 1;
                w = T.query(b[id[i]].y1, b[id[i]].y2, 1, n, T.rt[x - 1], T.rt[y]);
                if (w >= b[id[i]].k) {
                    tmp1[++p1] = id[i];
                } else {
                    b[id[i]].k -= w;
                    tmp2[++p2] = id[i];
                }
            }
        }
        for (int i = 1; i <= p1; ++i)
            id[s + i - 1] = tmp1[i];
        for (int i = 1; i <= p2; ++i)
            id[s + p1 + i - 1] = tmp2[i];
        binary_search(l, mid, s, s + p1 - 1);
        binary_search(mid + 1, r, s + p1, t);
    }
    
    int main() {
        //freopen("in", "r", stdin);
        n = in(), q = in();
        for (int i = 1; i <= n; ++i)
            for (int j = 1; j <= n; ++j) {
                b[++m] = (info){0, i, j, 0, 0, in()};
                mp[++nn] = b[m].k;
            }
        for (int i = 1; i <= q; ++i)
            b[++m] = (info){i, in(), in(), in(), in(), in()};
        for (int i = 1; i <= m; ++i)
            id[i] = i;
        std::sort(mp + 1, mp + 1 + nn);
        nn = std::unique(mp + 1, mp + 1 + nn) - mp - 1;
        binary_search(0, nn, 1, m);
        for (int i = 1; i <= q; ++i)
            printf("%d\n", res[i]);
        return 0;
    }
    

    T2、Tree

    题目链接

    给定一张 \(n \ (n \leq 100)\) 个点 \(m \ (m \leq 2000)\) 条边的无相连通图,有边权 \(C_i \ (0 \leq C_i \leq 100)\),求最小标准差生成树。

    \(Sol\)

    可以将答案看做一个关于平均数的函数:

    \[f(x) = \sqrt{ \frac{\sum (C_i - x) ^ 2}{n - 1} } \]

    枚举 \(x\),将边权设为 \(C_i - x\),求最小生成树,再按最小生成树的真实平均数更新答案。
    具体证明我不会,大概是对于每个 \(x\) 得到的真实平均值一定是与 \(x\) 相邻的。

    时间复杂度 \(O(\)能跑多少跑多少\()\)

    \(Source\)

    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    typedef double db;
    int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 105, M = 2005;
    const db eps = 1e-5;
    
    db res, now;
    int n, m;
    int fa[N];
    struct edge {
        int u, v, w;
        inline bool operator < (const edge &b) const {
            return (this->w - now) * (this->w - now) < (b.w - now) * (b.w - now);
        }
    } e[M];
    
    int get_fa(int u) {
        return fa[u] == u ? u : fa[u] = get_fa(fa[u]);
    }
    
    void calc() {
        res = 1 << 30;
        for (now = 100; now > 0; now -= 0.25) {
            std::sort(e + 1, e + 1 + m);
            int now_edge = 0, _sum = 0, sum = 0;
            for (int i = 1; i <= n; ++i)
                fa[i] = i;
            for (int i = 1; i <= m && now_edge < n - 1; ++i) {
                int fx = get_fa(e[i].u), fy = get_fa(e[i].v);
                if (fx == fy)
                    continue;
                fa[fx] = fy;
                ++now_edge;
                _sum += e[i].w * e[i].w, sum += e[i].w;
            }
            db tmp = sqrt(((db)(n - 1) * _sum - sum * sum) / (n - 1) / (n - 1));
            if (res - tmp > eps)
                res = tmp;
        }
    }
    
    int main() {
        //freopen("in", "r", stdin);
        n = in(), m = in();
        if (n == 1) {
            puts("0.0000");
            return 0;
        }
        for (int i = 1; i <= m; ++i)
            e[i] = (edge){in(), in(), in()};
    
        calc();
    
        printf("%.4lf\n", res);
        return 0;
    }
    

    T3、Points and Segments

    题目链接

    数轴上给定 \(n \ (n \leq 10 ^ 5)\) 条线段,每条线段为红色或蓝色,给出一种颜色方案,使得数轴上所有点被不同颜色覆盖的次数差绝对值不超过 \(1\)

    \(Sol\)

    可以把原数轴上的点看作线段,点被颜色覆盖可以看作线段被覆盖;
    题目中\([l,r]\) 线段就可以当作新图中 \([l,r + 1]\) 中所有线段被覆盖。

    问题转化为所有线段被覆盖的绝对值不超过 \(1\)
    \(l\)\(r + 1\) 连无向边,\(l\)\(r + 1\) 即为染成蓝色,否则染成红色;
    这样如果该图有欧拉回路 (所有点都是偶点),则两色覆盖次数都相等;
    若有奇点,那么奇点个数一定是偶数 (一条线段有两个端点),则从左到右第 \(2i\)\(2i + 1\) 个奇点连边;
    该图一定有欧拉回路,所有被覆盖的次数都相等;
    因为新加的边之间一定不会相交,所以把他们删掉后每个点只会少覆盖一次。

    时间复杂度 \(O(n)\)

    \(Source\)

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    inline int in() {
        int x = 0; char c = getchar(); bool f = 0;
        while (c < '0' || c > '9')
            f |= c == '-', c = getchar();
        while (c >= '0' && c <= '9')
            x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? -x : x;
    }
    template<typename T>inline void chk_min(T &_, T __) { _ = _ < __ ? _ : __; }
    template<typename T>inline void chk_max(T &_, T __) { _ = _ > __ ? _ : __; }
    
    const int N = 1e5 + 5;
    
    struct node {
        int l, r;
    } a[N];
    struct edge {
        int next, to;
    } e[N << 2];
    int ecnt = 1, head[N << 1];
    int n, nn, mp[N << 1], res[N], deg[N << 1];
    bool vis[N << 1], used[N << 1];
    
    inline void jb(const int u, const int v) {
        e[++ecnt] = (edge){head[u], v}, head[u] = ecnt;
        e[++ecnt] = (edge){head[v], u}, head[v] = ecnt;
        ++deg[u], ++deg[v];
    }
    
    void prep() {
        for (int i = 1; i <= n; ++i) {
            a[i] = (node){in(), in()};
            mp[++nn] = a[i].l, mp[++nn] = a[i].r;
        }
        std::sort(mp + 1, mp + 1 + nn);
        nn = std::unique(mp + 1, mp + 1 + nn) - mp - 1;
        for (int i = 1; i <= n; ++i) {
            a[i].l = std::lower_bound(mp + 1, mp + 1 + nn, a[i].l) - mp;
            a[i].r = std::lower_bound(mp + 1, mp + 1 + nn, a[i].r) - mp;
            jb(a[i].l, a[i].r);
        }
        int last = 0;
        for (int i = 1; i <= nn; ++i)
            if (deg[i] & 1) {
                if (!last)
                    last  = i;
                else
                    jb(last, i), last = 0;
            }
    }
    
    void dfs(const int u) {
        used[u] = 1;
        for (int i = head[u]; i; i = e[i].next) {
            if (!vis[i >> 1]) {
                vis[i >> 1] = 1;
                dfs(e[i].to);
                if (u > e[i].to)
                    res[i >> 1] = 1;
                else
                    res[i >> 1] = 0;
            }
        }
    }
    
    void work() {
        for (int i = 1; i <= nn; ++i)
            if (!used[i])
                dfs(i);
    }
    
    int main() {
        //freopen("in", "r", stdin);
        n = in();
        prep();
        work();
        for (int i = 1; i <= n; ++i)
            printf("%d ", res[i]);
        puts("");
        return 0;
    }
    
  • 相关阅读:
    转载:揪出MySQL磁盘消耗迅猛的真凶
    转载:MySQL看这一篇就够了
    转载:MySQL:亲测备份策略实例(线上真实备份案例)
    Consul集群搭建 2Server+ 3Client
    consul配置参数大全、详解、总结
    基于consul高可用
    MySQL MGR+ Consul之数据库高可用方案
    MySQL Group Replication-MGR集群
    MySQL binlog_format中sbr 和rbr(Statement-Based and Row-Based Replication)的优缺点
    MySQL binlog2sql-闪回数据
  • 原文地址:https://www.cnblogs.com/15owzLy1/p/11402365.html
Copyright © 2020-2023  润新知