网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2818
一道数论裸题,欧拉函数前缀和搞一下就行了。
小于n的gcd为p的无序数对,就是phi(1~n/p)的和,因为如果gcd(x,y)=p那么必有gcd(x/p,y/p)=1
转化成有序数对就可以把无序数对的个数*2-1(减1是因为有一个数对是(p,p))
代码:
var p,phi:array[0..10000010]of longint; s:array[0..10000010]of int64; b:array[0..10000010]of boolean; n,m,i,j,k,t:longint; ans:int64; begin read(n); t:=0; for i:=2 to n do b[i]:=true; b[1]:=false; phi[1]:=1; for i:=2 to n do begin if b[i] then begin phi[i]:=i-1; inc(t); p[t]:=i; end; for j:=1 to t do begin if i*p[j]>n then break; b[i*p[j]]:=false; if i mod p[j]=0 then begin phi[i*p[j]]:=phi[i]*p[j]; break; end; phi[i*p[j]]:=phi[i]*phi[p[j]]; end; end; ans:=0; for i:=1 to n do s[i]:=s[i-1]+phi[i]; for i:=1 to t do ans:=ans+s[n div p[i]]*2-1; writeln(ans); end.