• 深度学习之tensorflow框架(下)


      1 def tensor_demo():
      2     """
      3     张量的演示
      4     :return:
      5     """
      6     tensor1 = tf.constant(4.0)
      7     tensor2 = tf.constant([1, 2, 3, 4])
      8     linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)
      9     print("tensor1:
    ", tensor1)
     10     print("tensor2:
    ", tensor2)
     11     print("linear_squares:
    ", linear_squares)
     12 
     13     # 生成常用张量
     14     tensor3 = tf.zeros(shape=(3, 4))
     15     print("tensor3:
    ", tensor3)
     16     tensor4 = tf.ones(shape=(2, 3, 4))
     17     print("tensor4:
    ", tensor4)
     18     tensor5 = tf.random_normal(shape=(2, 3), mean=1.75, stddev=0.2)
     19     print("tensor5:
    ", tensor5)
     20 
     21     with tf.compat.v1.Session() as sess:
     22         print("tensor3_value:
    ", tensor3.eval())
     23         print("tensor4_value:
    ", tensor4.eval())
     24         print("tensor4_value:
    ", tensor5.eval())
     25 
     26     return None
     27 
     28 
     29 def tensoredit_demo():
     30     """
     31     张量类型的修改
     32     :return:
     33     """
     34     linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)
     35     print("linear_squares_before:
    ", linear_squares)
     36 
     37     l_cast = tf.cast(linear_squares, dtype=tf.float32)
     38     print("linear_squares_after:
    ", linear_squares)
     39     print("l_cast:
    ", l_cast)
     40     return None
     41 
     42 
     43 def editstaticshape_demo():
     44     """
     45     更新/改变静态形状
     46     :return:
     47     """
     48     a = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, None])
     49     b = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 10])
     50     c = tf.compat.v1.placeholder(dtype=tf.float32, shape=[3, 2])
     51     print("a:
    ", a)
     52     print("b:
    ", b)
     53     print("c:
    ", c)
     54 
     55     # 更新形状未确定的部分
     56     a.set_shape([2, 3])
     57     b.set_shape([2, 10])
     58     print("a:
    ", a)
     59     print("b:
    ", b)
     60 
     61     return None;
     62 
     63 def editshape_demo():
     64     """
     65     更新/改变动态形状
     66     不会改变原始的tensor
     67     返回新的改变类型后的tensor
     68     :return:
     69     """
     70     a = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, None])
     71     print("a:
    ", a)
     72     a.set_shape([2, 3])
     73     print("a_setShape:
    ", a)
     74     # 元素个数没有变,还是2*3*1=6个
     75     a_reshape = tf.reshape(a,shape=[2,3,1])
     76     print("a_reshape:
    ", a_reshape)
     77     print("a:
    ", a)
     78 
     79     return None;
     80 
     81 def variable_demo():
     82     """
     83     变量的演示
     84     变量需要显式初始化,才能运行值
     85     :return:
     86     """
     87     # 创建变量
     88     # 使用命名空间可以使图的结构更加清晰
     89     with tf.variable_scope("myscope"):
     90         a = tf.Variable(initial_value=50)
     91         b = tf.Variable(initial_value=40)
     92     with tf.variable_scope("yourscope"):
     93         c= tf.add(a,b)
     94     print("a:
    ",a)
     95     print("b:
    ",b)
     96     print("c:
    ",c)
     97 
     98     # 初始化变量
     99     init = tf.global_variables_initializer()
    100 
    101     # 开启会话
    102     with tf.Session() as sess:
    103         sess.run(init)
    104         a_value,b_value,c_value=sess.run([a,b,c])
    105         print("a_value:
    ",a_value)
    106         print("b_value:
    ",b_value)
    107         print("c_value:
    ",c_value)
    108 
    109     return None
  • 相关阅读:
    用php实现一个双向队列 如何实现?
    extract函数行结果
    替换指定字符串中,键对应的键值
    php裁剪图片(支持定点裁剪)
    Swoole和Swoft的那些事 (Http/Rpc服务篇)
    FineCMS介绍
    打造属于自己的比特币钱包
    数据可视化的艺术
    如何通过织云 Lite 愉快地玩转 TSW
    你想知道的大数据知识都在这里
  • 原文地址:https://www.cnblogs.com/quxiangjia/p/12292785.html
Copyright © 2020-2023  润新知