• 基本统计方法的选择与应用


    一、确定资料的类型:分类资料、定量资料;
     选择适当的统计方法,资料不同,设计不同,采用的分析方法不同;
    1、计量资料的比较(比较集中趋势是否不同):
        (1)两组:t检验、Wilcoxon秩和检验 …

         t分布(近似正态分布):用于根据小样本来估计呈正态分布且方差未知的总体的均值。   

    定义:假设X服从标准正态分布N(0,1),Y服从 卡方分布,那么 的分布称为自由度为n的t分布,记为

    分布密度函数 ,其中,Gam(x)为伽马函数。

      如:医保患者与自费患者住院天数是否不同?
    资料与设计:两组独立的计量资料比较
    统计方法:两独立样本 t 检验(independent samples t-test)
    分析结果:t=2.17,P=0.033

    参数统计方法(t检验、ANOVA)有应用前提条件:
    A:资料满足正态性;
    B:比较的各组资料之间方差相等(满足方差齐性)。


    (2) 三组(及以上):方差分析、Kruskal-Wallis检验 …

    如:医生、护士、医护人员的期望收入指数是否有差别?
    资料与设计:三组独立的计量资料比较
    统计方法:完全随机设计的方差分析(one-way ANOVA)
    分析结果:F=20.89,P<0.0001
    结论:有差别。

     

    两变量之间关系的分析:
        相关分析、回归分析、秩相关 …
        如研究门急诊量与收入的关系、床位数与护士人数的关系

    变化趋势分析:
        Cochran-Armitage趋势检验、卡方检验 …
         如分析两周患病率随年龄变化的趋势

    综合评价:
       层次分析法、TOPSIS法、秩和比法 …
        如评价三甲医院医疗质量、综合绩效

    示例:

    研究医院床位数与护士人数之间是否有相关性。
    研究目的:床位数(X)与护士人数(Y)之间是否有关?关系如何(线性、非线性)?关系大小?
                      (由样本推断总体)
    资料与设计:来自于同一医院的两个指标
    统计方法:
            相关分析(correlaion analysis)衡量两指标之间是否有线性关系,及关系的强度和方向。
            回归分析(regression analysis)定量进行X到Y的量化估计或预测。
    变量关系的描述:散点图(scatter plot)
    相关分析的结果:r=0.83,P<0.0001   95%CI:(0.61,0.93)
    回归分析的结果:Y=-4.84 + 0.36X R平方=0.69
    结论:
         1. 可认为床位数与护士人数之间有关,护士人数随床位数的增加而增加。
         2. 实有床位数的信息可以解释注册护士数信息量的69%,还有剩余的31%的信息需通过实有床位数以外的其他因素来解释。

    2、分类资料

      (1)无序分类资料的比较(比较率或构成是否不同):
           卡方检验、Fisher精确概率法 …

      如:

    两样本率的比较(卡方检验)
    用抗凝剂和不用抗凝剂治疗急性心肌梗塞患者的生存率是否不同?


    P<0.01,按α=0.05水准拒绝H0 ,接受H1 ,可认为用与不用抗凝剂治疗急性心肌梗塞的效果不同,用抗凝剂后的生存率较高。

     

      (2)有序等级资料的比较(比较平均程度、等级是否不同):
           Wilcoxon秩和检验、Kruskal-Wallis检验 …

      如:

    比较三家医院门诊候诊时间是否有差别。统计很长,较长,一般,较短,很短有多少例。


    资料与设计:三组独立的等级资料比较
    统计方法:Kruskal-Wallis秩和检验(Kruskal-Wallis H test)

    分析结果:2=7.81,P=0.020
    医院1至医院3患者候诊时间的平均秩次分别为:171.06、172.03、142.62
    结论:可认为不同医院患者的候诊时间不全相同。医院3最短,尚不能认为医院1与医院2有差别。

    ----------------------------------------------------------------------------------

     3、多元统计方法的选择与应用
    (1)探索影响因素:
    多重线性回归、logistic回归 …
    如探索影响肺炎患者住院总费用的因素

    (2)综合多个指标进行事物的分类或判别:
    聚类分析、判别分析 …

    (3)多指标的降维及潜在因素的探索:
    主成分分析、因子分析 …

    (4)预测事物的发展趋势:
    指数平滑法、ARIMA预测方法 …

    示例:研究目的:住院总费用的影响因素分析(年龄、性别(0-男;1-女)、住院天数、费别(0-自费;1-医保)、入院情况(0-一般;1-急症;2-危重)、所在医院(1-医院1;1-医院2;2-医院3;)、住院总费用)


    资料与设计:目标指标(应变量)为计量资料
    统计方法:多重线性回归(multiple linear regression)
    筛选自变量的方法:
     逐步法(stepwise)
     前进法(forward)
     后退法(backward)
     注意:自变量的量化与赋值

  • 相关阅读:
    注解-案例
    注解(Annotation)
    适合新手看的超详细CentOS Linux 7 安装Tomcat8过程
    CentOS Linux 7 提示 lsof: 未找到命令
    解决MySql报错:1130
    Spring Boot 创建自定义的properties文件
    spring boot 使用Schedule创建轻量级定时任务
    4.Java数组模块
    3.IDEA开发工具
    2.java基础语法
  • 原文地址:https://www.cnblogs.com/quietwalk/p/8270237.html
Copyright © 2020-2023  润新知