FFT,这份代码在51nod跑的非常快,赶紧扒下来!
//FFT 大整数乘法
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 500005;
const double pi = acos(-1.0);
char s1[N],s2[N];
int len,res[N];
struct Complex
{
double r,i;
Complex(double r=0,double i=0):r(r),i(i) {};
Complex operator+(const Complex &rhs)
{
return Complex(r + rhs.r,i + rhs.i);
}
Complex operator-(const Complex &rhs)
{
return Complex(r - rhs.r,i - rhs.i);
}
Complex operator*(const Complex &rhs)
{
return Complex(r*rhs.r - i*rhs.i,i*rhs.r + r*rhs.i);
}
} va[N],vb[N];
void rader(Complex F[],int len) //len = 2^M,reverse F[i] with F[j] j为i二进制反转
{
int j = len >> 1;
for(int i = 1;i < len - 1;++i)
{
if(i < j) swap(F[i],F[j]); // reverse
int k = len>>1;
while(j>=k)
{
j -= k;
k >>= 1;
}
if(j < k) j += k;
}
}
void FFT(Complex F[],int len,int t)
{
rader(F,len);
for(int h=2;h<=len;h<<=1)
{
Complex wn(cos(-t*2*pi/h),sin(-t*2*pi/h));
for(int j=0;j<len;j+=h)
{
Complex E(1,0); //旋转因子
for(int k=j;k<j+h/2;++k)
{
Complex u = F[k];
Complex v = E*F[k+h/2];
F[k] = u+v;
F[k+h/2] = u-v;
E=E*wn;
}
}
}
if(t==-1) //IDFT
for(int i=0;i<len;++i)
F[i].r/=len;
}
void Conv(Complex a[],Complex b[],int len) //求卷积
{
FFT(a,len,1);
FFT(b,len,1);
for(int i=0;i<len;++i) a[i] = a[i]*b[i];
FFT(a,len,-1);
}
void init(char *s1,char *s2)
{
int n1 = strlen(s1),n2 = strlen(s2);
len = 1;
while(len < 2*n1 || len < 2*n2) len <<= 1;
int i;
for(i=0;i<n1;++i)
{
va[i].r = s1[n1-i-1]-'0';
va[i].i = 0;
}
while(i<len)
{
va[i].r = va[i].i = 0;
++i;
}
for(i=0;i<n2;++i)
{
vb[i].r = s2[n2-i-1]-'0';
vb[i].i = 0;
}
while(i<len)
{
vb[i].r = vb[i].i = 0;
++i;
}
}
void gao()
{
Conv(va,vb,len);
memset(res,0,sizeof res);
for(int i=0;i<len;++i)
{
res[i]=va[i].r + 0.5;
}
for(int i=0;i<len;++i)
{
res[i+1]+=res[i]/10;
res[i]%=10;
}
int high = 0;
for(int i=len-1;i>=0;--i)
{
if(res[i])
{
high = i;
break;
}
}
for(int i=high;i>=0;--i) putchar('0'+res[i]);
puts("");
}
int main()
{
while(scanf("%s %s",s1,s2)==2)
{
init(s1,s2);
gao();
}
return 0;
}