• Equal Sums (map的基本应用) 多学骚操作


    C. Equal Sums
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given kk sequences of integers. The length of the ii-th sequence equals to nini.

    You have to choose exactly two sequences ii and jj (iji≠j) such that you can remove exactly one element in each of them in such a way that the sum of the changed sequence ii (its length will be equal to ni1ni−1) equals to the sum of the changed sequence jj (its length will be equal to nj1nj−1).

    Note that it's required to remove exactly one element in each of the two chosen sequences.

    Assume that the sum of the empty (of the length equals 00) sequence is 00.

    Input

    The first line contains an integer kk (2k21052≤k≤2⋅105) — the number of sequences.

    Then kk pairs of lines follow, each pair containing a sequence.

    The first line in the ii-th pair contains one integer nini (1ni<21051≤ni<2⋅105) — the length of the ii-th sequence. The second line of the ii-th pair contains a sequence of nini integers ai,1,ai,2,,ai,niai,1,ai,2,…,ai,ni.

    The elements of sequences are integer numbers from 104−104 to 104104.

    The sum of lengths of all given sequences don't exceed 21052⋅105, i.e. n1+n2++nk2105n1+n2+⋯+nk≤2⋅105.

    Output

    If it is impossible to choose two sequences such that they satisfy given conditions, print "NO" (without quotes). Otherwise in the first line print "YES" (without quotes), in the second line — two integers ii, xx (1ik,1xni1≤i≤k,1≤x≤ni), in the third line — two integers jj, yy (1jk,1ynj1≤j≤k,1≤y≤nj). It means that the sum of the elements of the ii-th sequence without the element with index xx equals to the sum of the elements of the jj-th sequence without the element with index yy.

    Two chosen sequences must be distinct, i.e. iji≠j. You can print them in any order.

    If there are multiple possible answers, print any of them.

    Examples
    input
    2
    5
    2 3 1 3 2
    6
    1 1 2 2 2 1
    output
    YES
    2 6
    1 2
    input
    3
    1
    5
    5
    1 1 1 1 1
    2
    2 3
    output
    NO
    input
    4
    6
    2 2 2 2 2 2
    5
    2 2 2 2 2
    3
    2 2 2
    5
    2 2 2 2 2
    output
    YES
    2 2
    4 1
    Note

    In the first example there are two sequences [2,3,1,3,2][2,3,1,3,2] and [1,1,2,2,2,1][1,1,2,2,2,1]. You can remove the second element from the first sequence to get [2,1,3,2][2,1,3,2] and you can remove the sixth element from the second sequence to get [1,1,2,2,2][1,1,2,2,2]. The sums of the both resulting sequences equal to 88, i.e. the sums are equal.

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 2e5 + 10;
     4 struct node {
     5     int x, y;
     6     node(int x, int y): x(x), y(y) {}
     7     node () {}
     8     bool operator < (node const &a ) const  {
     9         return a.x < x;
    10     }
    11 };
    12 map<int,node>mp;
    13 int t, n, a[maxn];
    14 int main() {
    15     scanf("%d", &t);
    16     int  flag = 0;
    17     for (int k = 1 ; k <= t ; k++) {
    18         scanf("%d", &n);
    19         int sum = 0;
    20         for (int i = 0 ; i < n ; i++ ) {
    21             scanf("%d", &a[i]);
    22             sum += a[i];
    23         }
    24         if (flag) continue;
    25         for (int i = 0 ; i < n ; i++) {
    26             int temp = sum - a[i];
    27             if (mp.find(temp) != mp.end()) {
    28                 if (mp[temp].x != k) {
    29                     printf("YES
    ");
    30                     printf("%d %d
    ", k, i+1);
    31                     printf("%d %d
    ", mp[temp].x, mp[temp].y+1);
    32                     flag = 1;
    33                 }
    34             }
    35             if (flag) break;
    36             mp[temp] = node(k, i);
    37         }
    38     }
    39     if (!flag) printf("NO
    ");
    40     return 0;
    41 }
  • 相关阅读:
    游标
    js问题杂记
    博客园页面设置
    Natas13 Writeup(文件上传,绕过图片签名检测)
    Natas12 Writeup(文件上传漏洞)
    Natas11 Writeup(常见编码、异或逆推、修改cookie)
    Natas10 Writeup(正则表达式、grep命令)
    Natas9 Writeup(命令注入)
    Natas8 Writeup(常见编码、php函数)
    Natas7 Writeup(任意文件读取漏洞)
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9278889.html
Copyright © 2020-2023  润新知