https://matplotlib.org/index.html
matplotlib.pyplot 单图示例
import matplotlib.pyplot as plt import random from pylab import mpl # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False x = range(60) y_shanghai = [random.uniform(15, 18) for i in x] y_beijing = [random.uniform(1,3) for i in x] # 1.创建画布 plt.figure(figsize=(20, 8), dpi=100) # 2.绘制图像 plt.plot(x, y_shanghai, label="上海") plt.plot(x, y_beijing, color="r", linestyle="--", label="北京") # 2.1 添加x,y轴刻度 # 构造x,y轴刻度标签 x_ticks_label = ["11点{}分".format(i) for i in x] y_ticks = range(40) # 刻度显示 plt.xticks(x[::5], x_ticks_label[::5]) plt.yticks(y_ticks[::5]) # 2.2 添加网格显示 plt.grid(True, linestyle="--", alpha=0.5) # 2.3 添加描述信息 plt.xlabel("时间") plt.ylabel("温度") plt.title("中午11点--12点某城市温度变化图", fontsize=20) # 2.4 图像保存 plt.savefig("./test.png") # 2.5 添加图例 plt.legend(loc=0) # 3.图像显示 plt.show()
matplotlib.pyplot 多图示例
import matplotlib.pyplot as plt import random from pylab import mpl # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 5) for i in x]
# 1.创建画布
# plt.figure(figsize=(20, 8), dpi=100)
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=100)
# 2.绘制图像
# plt.plot(x, y_shanghai, label="上海")
# plt.plot(x, y_beijing, color="r", linestyle="--", label="北京")
axes[0].plot(x, y_shanghai, label="上海")
axes[1].plot(x, y_beijing, color="r", linestyle="--", label="北京")
# 2.1 添加x,y轴刻度
# 构造x,y轴刻度标签
x_ticks_label = ["11点{}分".format(i) for i in x]
y_ticks = range(40)
# 刻度显示(2种方法)
# plt.xticks(x[::5], x_ticks_label[::5])
# plt.yticks(y_ticks[::5])
axes[0].set_xticks(x[::5])
axes[0].set_yticks(y_ticks[::5])
axes[0].set_xticklabels(x_ticks_label[::5])
axes[1].set_xticks(x[::5])
axes[1].set_yticks(y_ticks[::5])
axes[1].set_xticklabels(x_ticks_label[::5])
# 2.2 添加网格显示
# plt.grid(True, linestyle="--", alpha=0.5)
axes[0].grid(True, linestyle="--", alpha=0.5)
axes[1].grid(True, linestyle="--", alpha=0.5)
# 2.3 添加描述信息
axes[0].set_xlabel("时间")
axes[0].set_ylabel("温度")
axes[0].set_title("中午11点--12点某城市温度变化图", fontsize=20)
axes[1].set_xlabel("时间")
axes[1].set_ylabel("温度")
axes[1].set_title("中午11点--12点某城市温度变化图", fontsize=20)
# # 2.4 图像保存
# plt.savefig("./test.png")
# # 2.5 添加图例
# plt.legend(loc=0)
axes[0].legend(loc=0)
axes[1].legend(loc=0)
# 3.图像显示
plt.show()
示例
import numpy as np # 0.准备数据 x = np.linspace(-10, 10, 1000) //等差数列 1000 为等额1000份 y = np.sin(x) //cos tan arcsin arccos arctan 1/tan # 1.创建画布 plt.figure(figsize=(20, 8), dpi=100) # 2.绘制函数图像 plt.plot(x, y) # 2.1 添加网格显示 plt.grid() # 3.显示图像 plt.show()
图形
折线图:以折线的上升或下降来表示统计数量的增减变化的统计图
特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)
api:plt.plot(x, y)
散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。
特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)
api:plt.scatter(x, y)
柱状图:排列在工作表的列或行中的数据可以绘制到柱状图中。
特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)
api:plt.bar(x, width, align='center', **kwargs)
绘制柱状图 代码: # 0.准备数据 # 电影名字 movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它'] # 横坐标 x = range(len(movie_name)) # 票房数据 y = [73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222] # 1.创建画布 plt.figure(figsize=(20, 8), dpi=100) # 2.绘制柱状图 plt.bar(x, y, width=0.5, color=['b','r','g','y','c','m','y','k','c','g','b']) # 2.1b修改x轴的刻度显示 plt.xticks(x, movie_name) # 2.2 添加网格显示 plt.grid(linestyle="--", alpha=0.5) # 2.3 添加标题 plt.title("电影票房收入对比") # 3.显示图像 plt.show()
直方图:由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。
特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计)
api:matplotlib.pyplot.hist(x, bins=None)
饼图:用于表示不同分类的占比情况,通过弧度大小来对比各种分类。
特点:分类数据的占比情况(占比)
api:plt.pie(x, labels=,autopct=,colors)
- 添加x,y轴刻度【知道】
- plt.xticks()
- plt.yticks()
- 注意:在传递进去的第一个参数必须是数字,不能是字符串,如果是字符串吗,需要进行替换操作
- 添加网格显示【知道】
- plt.grid(linestyle="--", alpha=0.5)
- 添加描述信息【知道】
- plt.xlabel()
- plt.ylabel()
- plt.title()
- 图像保存【知道】
- plt.savefig("路径")
- 多次plot【了解】
- 直接进行添加就OK
- 显示图例【知道】
- plt.legend(loc="best")
- 注意:一定要在plt.plot()里面设置一个label,如果不设置,没法显示
- 多个坐标系显示【了解】
- plt.subplots(nrows=, ncols=)
- 折线图的应用【知道】
- 1.应用于观察数据的变化
- 2.可是画出一些数学函数图像