• The 2019 ICPC Asia Yinchuan Regional Programming Contest/2019银川区域赛 D Easy Problem(莫比乌斯容斥+欧拉降幂)


    The 2019 ICPC Asia Yinchuan Regional Programming Contest/2019银川区域赛 D Easy Problem(莫比乌斯容斥+欧拉降幂)

    题面:

    题意:

    给定4个整数(n,m,d,k),让你求(sum_{a_1=1}^{m}sum_{a_2=1}^{m}dotssum_{a_n=1}^{m}[gcd(a_1,a_2,dots,a_n)=d](a_1*a_2*dots*a_n)^k)

    思路:

    利用莫比乌斯函数性质和乘法分配律得:

    [sum_{a_1=1}^{m}sum_{a_2=1}^{m}dotssum_{a_n=1}^{m}[gcd(a_1,a_2,dots,a_n)=d](a_1*a_2*dots*a_n)^k \ =d^{kn}sum_{a_1=1}^{m/d}sum_{a_2=1}^{m/d}dotssum_{a_n=1}^{m/d}[gcd(a_1,a_2,dots,a_n)=1](a_1*a_2*dots*a_n)^k \ =d^{kn}sum_{a_1=1}^{m/d}sum_{a_2=1}^{m/d}dotssum_{a_n=1}^{m/d}sum_{j|gcd(a_1,a_2,dots,a_n)}mu(j)(a_1*a_2*dots*a_n)^k \ =d^{kn}sum_{j=1}^{m/d}mu(j) j^ksum_{a_1=1}^{m/d/j}sum_{a_2=1}^{m/d/j}dotssum_{a_n=1}^{m/d/j}(a_1*a_2*dots*a_n)^k \ =d^{kn}sum_{j=1}^{m/d}mu(j) j^k(sum_{i=1}^{m/d/j}i^k)^n \ ]

    这样我们就可以预处理出(1^k,2^k,3^k,dots,m^k),然后枚举(mathit j)进行快速求解,时间复杂度:(O(T*m*logk))

    观察答案的计算式可以发现,(mathit n)只存在于指数部分,于是我们可以利用欧拉降幂来将其降数量级。
    欧拉降幂的公式为:

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 100010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    bool vis[maxn];
    long long prim[maxn], mu[maxn], sum[maxn], cnt;
    void get_mu(long long n)
    {
        mu[1] = 1;
        for (long long i = 2; i <= n; i++) {
            if (!vis[i]) {mu[i] = -1; prim[++cnt] = i;}
            for (long long j = 1; j <= cnt && i * prim[j] <= n; j++) {
                vis[i * prim[j]] = 1;
                if (i % prim[j] == 0) { break; }
                else { mu[i * prim[j]] = -mu[i]; }
            }
        }
        // for (long long i = 1; i <= n; i++) { sum[i] = sum[i - 1] + mu[i]; }
    }
    
    
    ll euler(ll n)   //log(n)时间内求一个数的欧拉值
    {
        ll ans = n;
        for (ll i = 2; i * i <= n; i++) {
            if (n % i == 0) {
                ans -= ans / i;
                while (n % i == 0) { n /= i; }
            }
        }
        if (n > 1) { ans -= ans / n; }
        return ans;
    }
    char s[maxn];
    ll m, d, k;
    ll a[maxn];
    
    int main()
    {
    #if DEBUG_Switch
        freopen("D:\code\input.txt", "r", stdin);
    #endif
        //freopen("D:\code\output.txt","w",stdout);
        get_mu(maxn - 1);
        ll mod = euler(59964251);
        ll base = 59964251ll;
        int t;
        t = readint();
        while (t--) {
            scanf("%s %lld %lld %lld", s + 1, &m, &d, &k);
            int len = strlen(s + 1);
            ll n = 0;
            repd(i, 1, len) {
                n = n * 10 + (s[i] - '0');
                if (n > mod) {
                    n = n % mod + mod;
                }
            }
            repd(i, 1, m / d) {
                a[i] = powmod(i, k, base);
                sum[i] = (a[i] + sum[i - 1]) % base;
            }
            repd(i, 1, m / d) {
                sum[i] = powmod(sum[i], n, base);
            }
            ll ans = 0ll;
            repd(j, 1, m / d) {
                ans += mu[j] * sum[m / d / j] % base * powmod(a[j], n, base) % base;
                ans = (ans + base) % base;
            }
    
            ans = ans * powmod(d, k * n , base) % base;
            printf("%lld
    ", ans );
        }
    
        return 0;
    }
    
    
    
  • 相关阅读:
    51nod 2080 最长上升子序列
    common js
    es Module
    git关于分支的常用操作
    react实现浏览器的返回、前进、刷新,关闭拦截
    Blob,ArrayBuffer,FileReader,FormData,Buffer的理解
    memo、useCallback、useMemo三者的区别
    npm 和 yarn的全局安装位置
    react中单行文本溢出省略号
    react中基于styled-components组件的一像素边框问题
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/14031404.html
Copyright © 2020-2023  润新知