• Reachability from the Capital CodeForces


    There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berland are one-way.

    What is the minimum number of new roads that need to be built to make all the cities reachable from the capital?

    New roads will also be one-way.

    Input

    The first line of input consists of three integers nn, mm and ss (1n5000,0m5000,1sn1≤n≤5000,0≤m≤5000,1≤s≤n) — the number of cities, the number of roads and the index of the capital. Cities are indexed from 11 to nn.

    The following mm lines contain roads: road ii is given as a pair of cities uiui, vivi (1ui,vin1≤ui,vi≤n, uiviui≠vi). For each pair of cities (u,v)(u,v), there can be at most one road from uu to vv. Roads in opposite directions between a pair of cities are allowed (i.e. from uu to vv and from vv to uu).

    Output

    Print one integer — the minimum number of extra roads needed to make all the cities reachable from city ss. If all the cities are already reachable from ss, print 0.

    Examples

    Input
    9 9 1
    1 2
    1 3
    2 3
    1 5
    5 6
    6 1
    1 8
    9 8
    7 1
    Output
    3
    Input
    5 4 5
    1 2
    2 3
    3 4
    4 1
    Output
    1

    Note

    The first example is illustrated by the following:

    For example, you can add roads (6,46,4), (7,97,9), (1,71,7) to make all the cities reachable from s=1s=1.

    The second example is illustrated by the following:

    In this example, you can add any one of the roads (5,15,1), (5,25,2), (5,35,3), (5,45,4) to make all the cities reachable from s=5s=5.

    题意:

    给定n个节点,M个有向边,和一个节点s。

    问最小需要加多少个有向边可以使全部的节点都有到达s节点的路径。


    思路:

    把除了s节点的其他节点都缩成强连通分量,强连通分量不能到达s节点的,这个分量多加一个边即可到达。

    缩成强连通分量的方法可以用dfs+并查集。

    枚举每一个边的两边的节点a和b,如果a和b所在的集合(并查集维护出的集合)有一个边联通,那么把这两个节点对应的集合合并(并查集处理合并集合。)

    时间复杂度:O(n*m)

    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define dll(x) scanf("%I64d",&x)
    #define xll(x) printf("%I64d
    ",x)
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
    inline void getInt(int* p);
    const int maxn=10010;
    const int inf=0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    std::vector<int> v[maxn];
    int n,m,rt;
    int a,b;
    int par[maxn];
    void init()
    {
        repd(i,1,n)
        {
            par[i]=i;
        }
    }
    int findpar(int x)
    {
        if(par[x]==x)
        {
            return x;
        }else
        {
            return par[x]=findpar(par[x]);
        }
    }
    int vis[maxn];
    bool check(int x,int y)
    {
        int res=0;
        if(x==y)
        {
            return 1;
        }
        vis[x]=1;
        for(auto a:v[x])
        {
            if(!vis[a])
            {
                if(check(a,y))
                {
                    res=1;
                    break;
                }
            }
        }
        return res;
    }
    int cnt[maxn];
    int u[maxn];
    int vv[maxn];
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_text\code_stream\out.txt","w",stdout);
        gbtb;
        cin>>n>>m>>rt;
        repd(i,1,m)
        {
            cin>>a>>b;
            u[i]=a;
            vv[i]=b;
            v[a].pb(b);
        }
        init();
        repd(i,1,m)
        {
            MS0(vis);
            a=u[i];
            b=vv[i];
            a=findpar(a);
            b=findpar(b);
            if(a!=b&&b!=rt&&check(a,b))
            {
                par[a]=b;
            }
        }
        int ans=0;
        repd(i,1,n)
        {
            if(i!=rt)
            {
                a=findpar(i);
                if(a==i)
                {
                    ans++;
                }
    
            }
        }
        cout<<ans<<endl;
        return 0;
    }
    
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }

    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    QQ空间爬虫--获取好友信息
    分层最短路-2018南京网赛L
    安装SSH,配置SSH无密码登陆
    树形DP--求树上任意两点间距离和
    JTS基本概念和使用
    odps编写UDF的实现
    oozie安装总结
    同步工具的选择
    转:hive面试题
    转:hive-列转行和行转列
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/10719626.html
Copyright © 2020-2023  润新知