查看安装包 pip list
本帖提供操作过程,具体操作网上有好多了,不赘述。红色字体为后来复现出现的问题以及批注
题外话:
(1)python 的环境尽量保持干净,尽量单一,否则容易把自己搞晕,不知道自己后来项目开发的依赖包到底安装在哪里了。
(2)无论是安装python2 还是python3,还是anaconda,一定要清楚自己的环境,不要一连装了好几个版本,会崩的。
(3)查看环境变量,python的环境变量是否都被配置,如何配置,在安装python时就已经涉及到了,最后采用anaconda虚拟环境安装时不需要配置。
如果实在是需要,我的建议是在anaconda里可以重建多个虚拟环境 ,重建环境,最后一个步骤会介绍。
我测试过三遍,我这个版本是可以走通的。后来利用GTX 1060 6G的环境安装,也是没问题的。
环境:
OS:win10
cuda:9.0
cudnn:cudnn-9.0-windows10-x64-v7.4.1.5
GPU: 1050 ti
后来分别用 GTX 1060 6g 以及 GTX 950 选择这个版本都能运行
资源包:https://pan.baidu.com/s/1rI_6zBlSIbs5fMWhydqqvA
提取码:2pzm
步骤,最好按照顺序来:
一、查看自己的显卡和驱动类型,下载对应的版本
盗来的这张图:
粗略的看下版本对应关系:
https://tensorflow.google.cn/install/source_windows
桌面右键找到nVidia图形显卡按钮,这里提一下,我的是:
后来我用这个配置也是能运行的,截个图
附录,看清楚了:
二、安装CUDA
如果系统原先自带驱动,我直接覆盖,并未卸载。靠谱的安装方法看这里:
注意:会报错,需要安装VS2015,而且最好是VS2015
需要先安装VS2015:
网上关于VS2015的安装层出不穷,垃圾的太多了,前前后后我装了不只五遍,摸索出最好最简便的方式时就是默认安装,默认路径,否则很容易绕晕,
建议首先选择典型值,然后继续下去,如果后来配置cuda出现问题,打开控制面板->卸载程序-> 指定vs2015 右击-> 更改 再重新自定义安装,否则东西太大了,很多都是没啥用;
总共装了这么多东西,有些也可能是真的不需要,如图:
安装cuda 9.0
如果已经安装过cuda 9.2 或者其他的版本,重新安装cuda 9.0 会出现下面界面,个人直接继续安装,选择默认路径:
一般情况下CUDA的安装会出错,坑介绍的很详细了, 最好自定义安装,VS有一个组件需要单独安装:
重点!遵循下面帖子的操作方式,cuda安装包暂时不要关闭
以及对这个帖子的解释:
【软件安装】CUDA安装失败+win10+VS2015+CUDA8.0+CUDAVisualStudioIntegration找不到 - LeonJin的博客
接着:
如果已经安装过其他的版本,会出现下面:
接着,打开控制面板-> 卸载程序,出现图示冲突的,我就直接卸载,基本上都是后缀带版本 9.2的。这是后来的截图:
原先卸载的时候没注意,多卸载了图形显示卡,后来装上tensorflow-gpu cuda报错,用了驱动精灵把缺失的驱动补了回来
又从此步重新再跑一遍流程,题外话。
我两次一次配置了CUDA的环境变量,一次没有配置,都可以运行,里面提到了配置环境变量:
【CUDA】CUDA9.0+VS2017+win10详细配置_Python_笔尖的博客-CSDN博客
注意,验证cuda是否安装成功, 上面帖子提到的deviceQuery.exe 和 bandwidthTest.exe返回的 result 结果必须时 pass !!
进入cmd后输入 nvcc -V 指令不一定正确。
三、安装cudann
安装cudann的坑不多。
将解压后的 cudann 压缩包直接放在 cuda 9.0 的安装目录下就好
放入后:
备注:有人提到需要配置 cudann 的环境变量,我没有配置,不确定是否系统自动生成,从结果上看,暂时还没出现影响。
四、安装anaconda
anaconda在安装的时候自带python环境的
安装不赘述了,不是重点了,提一下,最好勾选添加环境变量选项。
五、安装tensorflow-gpu
tensorflow-gpu 也是需要安装自定义python环境,和anaconda的python版本独立,尽量不要直接在基环境中直接安装 tensorflow-gpu 版本的。
查看Ancona环境
conda info --envs
创建环境,并安装python版本:
#创建制定python版本的环境名字为tfgpu
conda create -n tfgpu python=3.6
备注:如果环境错误,可以直接重新运行命令,然后自动删掉原先的环境。
激活,进入状态:
activate tfgpu
安装tensorflow-gpu
如果 直接指定安装,网速真的是太慢了,这里采用清华的镜像安装,指定 1.8.0 版本的,根据cuda 以及cudann版本选择gpu版本,这里可以参阅一开始提到的版本介绍,输入命令需要参考资料:
pip install --default-timeout=100 --ignore-installed tensorflow-gpu==1.8.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
假如需要卸载:
pip uninstall 指定上述安装的gpu版本名字
#退出虚拟环境
deactivate
# 删除某个环境 conda remove --name your_env_name --all
参考这个操作流程 TensorFlow在Windows上的CPU版本和GPU版本的安装指南(亲测有效) - 只因有你pi
进入虚拟环境安装jupyter: (tfgpu) C:Usersadminstrator pip install jupyter 添加当前虚拟环境到jupyter kernel,打开jupyter notebook之后即可修改kernel: python -m ipykernel install --user --name=tfgpu
即便最后完全安装成功,但是在跑模型时跑不了的话,报错:
Check failed: stream->parent()->GetConvolveAlgorithms(&algorithms)
我的解决方案是卸载tensorflow-gpu的版本,然后安装同类型其他版本,就不停的试错额。
六、配置jupyter tensorflow-gpu 环境
cmd进入虚拟环境,也可以在anaconda prompt 进入,安装 jupyter :
PS: 针对版本较多的情况,如果想默认打开是这个版本,需要加入环境变量,cmd后python才能默认打开的是这个版本。
七、验证安装环境
整理的帖子基本都是大同小异,看看就懂了:
测试TensorFlow(GPU)是否安装成功_人工智能_weixin_43522055的博客-CSDN博客
最好进入虚拟环境一行行代码执行,才能看到效果,我在安装jupyter后,输入这些没有看到后台执行过程。
import tensorflow as tf hello=tf.constant("hello,world") sess=tf.Session() print(sess.run(hello))
类似的贴子给大家作为参考,网上操作不全的帖子真是太多了,所以自己才吐血写了一篇:
安装教程 篇一:在Window10下安装Anaconda3 和 GPU版
在Windows平台监视英伟达(Nvidia)显卡性能 - hhy_csdn的博客
tensorflow训练使用GPU和CPU的不同指定方法 - qq_35559420的博客
windows7下使用GPU训练tensorflow深度学习模型 - baidu_15113429的博客
keras使用GPU训练模型 - suiyueruge1314的博客
PS: 先想办法去查资料,而不是去卸载版本。
报错图 1:
如果是下面这个图,可能是 cudnn 没装好: