The sum problem
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17697 Accepted Submission(s):
5275
Problem Description
Given a sequence 1,2,3,......N, your job is to
calculate all the possible sub-sequences that the sum of the sub-sequence is
M.
Input
Input contains multiple test cases. each case contains
two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M =
0.
Output
For each test case, print all the possible sub-sequence
that its sum is M.The format is show in the sample below.print a blank line
after each test case.
Sample Input
20 10
50 30
0 0
Sample Output
[1,4]
[10,10]
[4,8]
[6,9]
[9,11]
[30,30]
#include<stdio.h> #include<string.h> #include<math.h> #include<algorithm> using namespace std; #define maxn 1000000 __int64 N,M; int main() { while(scanf("%I64d%I64d",&N,&M)!=EOF&&N&&M) { for(__int64 k=(int)sqrt(2*M);k>=1;k--) { __int64 a1=M/k-(k-1)/2; if((2*a1+k-1)*k==2*M) { printf("[%I64d,%I64d] ",a1,a1+k-1); } } printf(" "); } return 0; } //根据等差数列求和,m=(2*a1+k-1)*k/2,k表示数列的项数,a1表示首项。 //枚举k(1<=k<=sqtrt(m))