• python数据分析NumPy入门


    numpy库入门

    维度:一组数据的组织形式

    一维数据:由对等关系的有序或无序数列构成,采用线性方式组织 (列表,集合) (数组)

    列表和数组 都是一组数据的有序结构 不同点 列表:数据类型可以不同 数组:数据类型相同

    二维数据:由多个一维数据构成,是一维数据的组合形式 (表格)(列表) 多维数据:由一维或二维数据在新维度上扩展形成(多维列表) 高维数据仅利用最基本的二元关系展示数据间的复杂结构 (字典)

    Numpy Numpy 是一个开源的python科学计算基础库 一个强大的N维数组对象 ndarray 广播功能函数 整合C/C++/Fortran代码的工具 线性代数、傅里叶变换、随机数生成等功能 Numpy是SciPy、Pandas等数据处理或科学计算库的基础

    Numpy的引用 import numpy as np 引入模块的别名 ps: 尽管别名可以省略或更改,建议使用上述约定的别名

    例子 计算A^2+B^3,其中A和B是一维数组

    import numpy as np

    def npSum(): a = np.array([0,1,2,3,4]) b = np.array([9,8,7,6,5]) c = a2 + b3 return c

    print(npSum )

    N维数组对象:ndarray 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据 设置专门的数组对象,经过优化,可以提升这类应用的运算速度

    N维数组对象:Ndarray

    ndarray是一个多维数组对象,由两部分构成:

    实际的数据

    描述这些数据的元数据(数据维度、数据类型等)

    ndarray 数组一般要求所有元素的类型相同(同质) 数组下标从0开始


    ndarray 实例 np.array()可以生成一个ndarray数组 np.array()输出形式为[],元素由空格分割 轴:保存数组的维度 秩:轴的数量

    ndarray对象的属性

    .ndim 秩,即轴对象的数量或维度的数量

    .shape ndarray对象的尺度,对于矩阵,n行m列

    .size ndarray对象元素的个数,相当于.shape 中 n*m的值

    .dtype ndarray对象中每个元素的类型

    ndarray 的元素类型

    对比python 对比:python语法仅支持整数、浮点数和复数3种类型

    科学计算设计数据较多,对于存储和性能都有较高要求
    对元素类型精细定义,有助于Numpy合理使用存储空间并优化性能。
    有助于程序员对程序规模有合理评估

    ndarray数组的创建方法

    1.从Python中的列表、元祖等类型创建ndarray数组 x = np.array(list/tuple) x = np.array(list/tuple,dtype = np.float32) 当np.array()不指定dtype时,NumPy将根据数据情况关联一个dtype类型。

     

    2.使用Numpy中函数创建ndarray数组,如:arange、ones、zeros等。 np.arange(n):类似range()函数,返回一个ndarray类型,元素从0-n-1 np.ones(shape):根据shape生成一个全是1的数组,shape是元祖类型。 np.zeros(shape):根据shape生成一个全是0的数组,shape是元祖类型。 np.full(shape,val):根据shape生成一个数组,每个元素的值都是val。 np.eye(n):创建一个正方的n*n单位矩阵,对角线为1,其余为0。 np.empty(shape):随机创建一个数组,根据内存状态。

    np.ones_like(a):根据数组a的形状生成一个全1数组
    np.zeros_like(a):根据数组a的形状生成一个全0数组
    np.full_like(a,val):根据数组a的形状生成一个数组,每个元素都是val

    np.linspace():根据起止数据等间距地填充数据,形成数组。
    np.concatenate():将两个或多个数组合并成一个新的数组

    ndarray数组的维度变换 .reshape(shape):不改变数组元素,返回一个shape形状的数组,原数组不变 .resize(shape):与.reshape()功能一致,但修改原数组 .swapaxes(ax1,ax2):将数组n个维度中两个维度进行调换 .flatten():对数组进行降维,返回折叠后的一维数组,原数组不变 ndarray数组的类型变换 .astype(new_type)方法一定会创建新的数组(原始数据的一个拷贝),即使两个类型一致。 .tolist()数组向列表的转换 3.从字节流(raw bytes) 中创建ndarray 数组。

    4.从文件中读取特定格式,创建ndarray 数组

    数组的索引与切片 一维数组: a = np.array([9,8,7,6,5]) a[2] #7 索引 a[1:4:2] #array([8,6]) 起始编号:终止编号(不包含):步长

    多维数组:
    a = np.arange(24).reshape((2,3,4))
    array([[[0,1,2,3],
    [4,5,6,7],
    [8,9,10,11]],a

    [[12,13,14,15],
      [16,17,18,19],
      [20,21,22,23]]])

     

    #索引
    a[1,2,3]  #23
    a[0,1,2]  #6
    a[-1,-2,-3] #17
    #数组的索引都是从0开始,每个维度用,分割
    #切片
    a[:,1,-3]
    #array([5,17])

    所有维度下的索引1的内容的-3

    a[:,1:3,:] #array([[[4,5,6,7], [8,9,10,11]],

           [[16,17,18,19],
      [20,21,22,23]]])

    #所有维度下的所有1-3 即4-11 和16-17

     

    a[:,:,::2]
    #array([[[0,2],
    [4,6],
    [8,10]],

    [[12,14],
    [16,18],
    [20,22]]])

    所有维度下的所有值的所有元素 步长为2

    ps: 选取一个维度用' : ' 每个维度切片方法与一维数组相同 每个维度可以使用步长跳跃切片

     

    ndarray数组的运算

    数组与标量之间的运算作用于数组的每一个元素
    a.mean()平均值
    NumPy一元函数
    对ndarray中的数据执行元素级运算的函数

    np.abs(x)  np.fabs(x)  计算数组各元素的绝对值
    np.sqrt(x)             计算数组各元素的平方根
    np.square(x)           计算数组各元素的平方
    np.log(x) np.log10(x)  计算数组各元素的自然对数
    np.log2(x)   10底对数和2底对数
    np.ceil(x) np.floor(x) 计算数组各元素的ceiling的值或floor值
    ps:
    ceiling:不超过元素的整数值
    floor:小于这个元素的最大整数值
    np.rint(x)             计算数组各元素的四舍五入值
    np.modf(x)			   计算数组各元素的小数和整数部分以两个独立数组形式返回
    np.cos(x) np.cosh(x)  
    np.sin(x) np.sinh(x)    计算数组各元素的普通型和双曲型三角函数
    np.tan(x) np.tanh(x)	
    np.exp(x)				 计算数组各元素的指数值
    np.sign(x)               计算数组各元素的符号值,1(+),0,-1(-)
    

    矩阵拼接

    #这里介绍一下矩阵拼接
    In [1]: import numpy as np
    
    In [2]: a = np.floor(10*np.random.random((2,2)))
    
    In [3]: b = np.floor(10*np.random.random((2,2)))
    
    In [4]: a
    Out[4]:
    array([[5., 1.],
           [5., 9.]])
    
    In [5]: b
    Out[5]:
    array([[9., 1.],
           [2., 7.]])
    
    In [6]: np.hstack((a,b))#调用 ndarray中的hstack方法进行行拼接
    Out[6]:
    array([[5., 1., 9., 1.],
           [5., 9., 2., 7.]])
    In [7]: np.vstack((a,b))#调用 ndarray中的hstack方法进行列拼接
    Out[7]:
    array([[5., 1.],
           [5., 9.],
           [9., 1.],
           [2., 7.]])
    
    #这里介绍矩阵的拆分
    
    In [9]: import numpy as np
    
    In [10]: a = np.floor(10*np.random.random((2,12)))
    
    In [11]: a
    Out[11]:
    array([[6., 6., 8., 7., 2., 9., 6., 2., 6., 7., 7., 5.],
           [7., 5., 1., 0., 4., 0., 2., 0., 9., 8., 1., 0.]])
    
    In [12]: np.hsplit(a,3)#平均拆分为3个数组
    Out[12]:
    [array([[6., 6., 8., 7.],
            [7., 5., 1., 0.]]), array([[2., 9., 6., 2.],
            [4., 0., 2., 0.]]), array([[6., 7., 7., 5.],
            [9., 8., 1., 0.]])]
    
    In [13]: np.hsplit(a,(3,4))#从3,4开始拆分 分成三个数组 这里3,4自成一个数组
    Out[13]:
    [array([[6., 6., 8.],
            [7., 5., 1.]]), array([[7.],
            [0.]]), array([[2., 9., 6., 2., 6., 7., 7., 5.],
            [4., 0., 2., 0., 9., 8., 1., 0.]])]
    
    In [14]: a = np.floor(10*np.random.random((2,12)))
    
    #纵向拆分
    In [16]: a = np.floor(10*np.random.random((12,2)))
    
    In [17]: a
    Out[17]:
    array([[1., 1.],
           [3., 4.],
           [5., 5.],
           [7., 4.],
           [3., 8.],
           [7., 5.],
           [4., 7.],
           [2., 4.],
           [6., 7.],
           [6., 6.],
           [6., 3.],
           [6., 1.]])
    
    In [18]: np.vsplit(a,3)
    Out[18]:
    [array([[1., 1.],
            [3., 4.],
            [5., 5.],
            [7., 4.]]), array([[3., 8.],
            [7., 5.],
            [4., 7.],
            [2., 4.]]), array([[6., 7.],
            [6., 6.],
            [6., 3.],
            [6., 1.]])]
    
    In [19]: np.vsplit(a,(3,4))
    Out[19]:
    [array([[1., 1.],
            [3., 4.],
            [5., 5.]]), array([[7., 4.]]), array([[3., 8.],
            [7., 5.],
            [4., 7.],
            [2., 4.],
            [6., 7.],
            [6., 6.],
            [6., 3.],
            [6., 1.]])]
    

     

     

  • 相关阅读:
    DDoS deflate
    stm32串口
    王立平--GUI与GUILayout的差别
    DOM模型
    Android设计模式(十二)--抽象工厂模式
    Dynamics CRM 开启EmailRouter日志记录
    python in操作引发 TypeError
    为OLED屏添加GUI支持2:2D图形库
    Bloxorz I (poj 3322 水bfs)
    URAL 1823. Ideal Gas(数学啊 )
  • 原文地址:https://www.cnblogs.com/pythonyeyu/p/10665566.html
Copyright © 2020-2023  润新知