• hdu 1969 Pie


    Pie

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6752    Accepted Submission(s): 2564


    Problem Description
    My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

    My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

    What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.
     
    Input
    One line with a positive integer: the number of test cases. Then for each test case:
    ---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
    ---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
     
    Output
    For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
     
    Sample Input
    3
    3 3
    4 3 3
    1 24
    5
    10 5
    1 4 2 3 4 5 6 5 4 2
     
    Sample Output
    25.1327
    3.1416
    50.2655
     
    Source
     
    Recommend
    wangye   |   We have carefully selected several similar problems for you:  1551 2446 2298 2333 2241 
     
    一道二分的题,学了这个算法很久了,但一直没有独立的写出过代码,二分的题不容易想到用二分解决,所以需要仔细思考,不过这道题是很明显的二分,而且是利用精度解决问题。
     
    题意:有n块蛋糕,m个人,自己也要蛋糕,所以是分给m+1个人,然后给出每块蛋糕的半径,每个人都要一块完整的蛋糕,则每个人最大能平均分到的蛋糕面积是多少。(蛋糕是平面圆)
     
    附上代码:
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 using namespace std;
     7 int n,m;
     8 double pi=acos(-1.0);  //计算π的值,这样更精确
     9 double a[10005];
    10 int xx(double x)
    11 {
    12     int num=0;
    13     for(int i=0; i<n; i++)
    14     {
    15         num+=int(a[i]/x);  //计算有多少块蛋糕大于此时的平均面积
    16     }
    17     if(num>=m)   //如果有这么多块面积分给所有人,则满足题意
    18         return 1;
    19     else
    20         return 0;
    21 }
    22 int main()
    23 {
    24     int T,i,j,r;
    25     double v;
    26     scanf("%d",&T);
    27     while(T--)
    28     {
    29         scanf("%d%d",&n,&m);
    30         m++;   //加上自己要的一块
    31         for(i=0; i<n; i++)
    32         {
    33             scanf("%d",&r);
    34             a[i]=r*r*pi;   //求出每块蛋糕的面积
    35             v+=a[i];      //记录所有蛋糕的总面积
    36         }
    37         double max,l,r,mid;
    38         sort(a,a+n);    //二分之前一定要排序
    39         max=v/m;      //每个人平均分到的最大蛋糕就是蛋糕总面积的平均值
    40         l=0.0,r=max;   //面积从0到平均值二分
    41         while((r-l)>1e-6)    //满足这个精度则跳出循环(不了解精度问题,模仿别人的写法)
    42         {
    43             mid=(r+l)/2;     //二分取中
    44             if(xx(mid))     //判断,若满足,则最大蛋糕面积可能更大,则取后半段继续搜
    45                 l=mid;
    46             else          //若不满足,则蛋糕取大了,则取前半段继续搜
    47                 r=mid;
    48         }
    49         printf("%.4lf
    ",l);   //保留四位小数输出
    50     }
    51 }
  • 相关阅读:
    3、MHC主要组织相容性复合体
    2、抗原
    1、免疫细胞
    【转】python3 内循环中遍历map,遍历一遍后再次进入内循环,map为空
    【转】Map 与 Unordered_map
    Chapter7 抑癌基因
    总结 搜索和最短路径问题
    1131 Subway Map DFS解法 BFS回溯!
    python 报错信息汇总
    python str转换成timedelta或date
  • 原文地址:https://www.cnblogs.com/pshw/p/4847179.html
Copyright © 2020-2023  润新知