• HDU 4135 Co-prime


    Co-prime

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2371    Accepted Submission(s): 887


    Problem Description
    Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
    Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
     
    Input
    The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
     
    Output
    For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
     
    Sample Input
    2
    1 10 2
    3 15 5
     
    Sample Output
    Case #1: 5
    Case #2: 10
    Hint
    In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
     

     容斥原理...注意重叠部分

    n小的时候可以用欧拉函数去做。对于n比较大的  得用容斥去做

    /* ***********************************************
    Author        :PK28
    Created Time  :2015/8/18 9:29:57
    File Name     :4.cpp
    ************************************************ */
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <stdio.h>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <iomanip>
    #include <list>
    #include <deque>
    #include <stack>
    #define ull unsigned long long
    #define ll long long
    #define mod 90001
    #define INF 0x3f3f3f3f
    #define maxn 10000+10
    #define cle(a) memset(a,0,sizeof(a))
    const ull inf = 1LL << 61;
    const double eps=1e-5;
    using namespace std;
    
    bool cmp(int a,int b){
        return a>b;
    }
    ll a,b,n;
    ll solve(){
        ll sum=0;
        vector<ll>v;
        for(int i=2;i*i<=n;i++)
            if(n%i==0){
                v.push_back(i);
                while(n%i==0)n/=i;            //对n进行素数分解
            }
        if(n>1)v.push_back(n);
        for(ll st=1;st<(1<<(v.size()));++st){//0 1
            ll bits=0,mult=1;
            for(int i=0;i<(int)v.size();++i){
                if(st&(1<<i)){               
                    ++bits;                   //记录有几个素数被用到 
                    mult*=v[i];
                }    
            }
            ll cur=b/mult-a/mult;             //a b区间 不与n互质的数的个数
            if(a%mult==0)cur++;
            if(bits&1)sum+=cur;               //奇+  偶-
            else sum-=cur;
        }
        return b-a-sum+1;
    }
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin); 
        #endif
        //freopen("out.txt","w",stdout);
        int t;
        cin>>t;
        for(int i=1;i<=t;i++){
            scanf("%I64d %I64d %I64d",&a,&b,&n);
            printf("Case #%d: %I64d
    ",i,solve());
        }
        return 0;
    }

     先对n分解质因数,分别记录每个质因数, 那么所求区间内与某个质因数不互质的个数就是n / r(i),假设r(i)是r的某个质因子 假设只有三个质因子,那么p1=n/r(1)

    p2=n/r(2)    p1和p2  有交集可以用容斥解决,那么

    总的不互质的个数应该为p1+p2+p3-p1*p2-p1*p3-p2*p3+p1*p2*p3,  pi代表n/r(i),即与某个质因子不互质的数的个数 ,当有更多个质因子的时候, 可以用状态压缩解决,二进制位上是1表示这个质因子被取进去了。 如果有奇数个1,就相加,反之则相减

  • 相关阅读:
    Objective-C 复合
    useContext的使用
    context的使用
    redux使用(二)
    redux使用(一)
    React class & function component 的区别
    combineReducers使用
    gnvm使用(未使用成功)
    React相关知识点
    eslint简单使用&&eslint与webpack结合使用
  • 原文地址:https://www.cnblogs.com/pk28/p/4738724.html
Copyright © 2020-2023  润新知