HDU 2222
题意:给n个模式串和一个字符串,求有多少个模式串在这个字符串中出现
思路:裸题,注意数组开的大小
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using namespace std; typedef long long LL; const int SZ = 500100; char keystr[55]; int tot; int fail[SZ], ch[SZ][33], sum[SZ]; char str[1000005]; void insert(char s[]) { int p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = s[i] - 'a'; if(!ch[p][c]) ch[p][c] = ++tot; p = ch[p][c]; } sum[p]++; } queue<int> q; void getfail() { fail[0] = 0; q.push(0); while(q.size()) { int u = q.front(); q.pop(); for(int i = 0; i < 26; i++) { if(ch[u][i]) { if(u == 0) fail[ch[u][i]] = 0; else { int v = fail[u]; while(v && ch[v][i] == 0) v = fail[v]; fail[ch[u][i]] = ch[v][i]; } q.push(ch[u][i]); } else ch[u][i] = ch[fail[u]][i]; } } } int match(char s[]) { int ans = 0, p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = s[i] - 'a'; while(p && ch[p][c] == 0) p = fail[p]; p = ch[p][c]; int v = p; while(sum[v] > 0) { ans += sum[v]; sum[v] = 0; v = fail[v]; } } return ans; } void init() { tot = 0; memset(sum, 0, sizeof(sum)); memset(ch, 0, sizeof(ch)); memset(fail, 0, sizeof(fail)); } int main() { int T; scanf("%d", &T); while(T--) { int n; scanf("%d", &n); init(); for(int i = 0; i < n; i++) { scanf("%s", keystr); insert(keystr); } getfail(); scanf("%s", str); printf("%d ", match(str)); } return 0; }
HDU 3065
题意:给n个模式串,一个字符串,输出在这个字符串中出现的模式串的出现次数
思路:裸题,记录idx[p] = id;//以p结尾的是第id个模式串
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using namespace std; typedef long long LL; typedef long double LD; const int SZ = 100100; char keystr[1010][55]; int tot; int fail[SZ]; int ch[SZ][30], idx[SZ], cnt[SZ]; char str[2000005]; void insert(char s[], int id) { int p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = s[i] - 'A'; if(!ch[p][c]) ch[p][c] = ++tot; p = ch[p][c]; } idx[p] = id;//以p结尾的是第id个模式串 } queue<int> q; void getfail() { fail[0] = 0; q.push(0); while(q.size()) { int u = q.front(); q.pop(); for(int i = 0; i < 26; i++) { if(ch[u][i]) { if(u == 0) fail[ch[u][i]] = 0; else { int v = fail[u]; while(v && ch[v][i] == 0) v = fail[v]; fail[ch[u][i]] = ch[v][i]; } q.push(ch[u][i]); } else ch[u][i] = ch[fail[u]][i]; } } } void match(char s[]) { int p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = s[i] - 'A'; if(s[i] < 'A' || s[i] > 'Z') c = 26; while(p && ch[p][c] == 0) p = fail[p]; p = ch[p][c]; int v = p; while(v) { if(idx[v] > 0) cnt[idx[v]]++; v = fail[v]; } } } void init() { tot = 0; memset(cnt, 0, sizeof(cnt)); memset(ch, 0, sizeof(ch)); memset(fail, 0, sizeof(fail)); memset(idx, 0, sizeof(idx)); } int main() { int n; while(~scanf("%d", &n)) { init(); for(int i = 1; i <= n; i++) { scanf("%s", keystr[i]); insert(keystr[i], i); } getfail(); scanf("%s", str); match(str); for(int i = 1; i <= n; i++) if(cnt[i]) printf("%s: %d ", keystr[i], cnt[i]); } return 0; }
ZOJ 3228
题意:给n个模式串,一个字符串,分别求每个模式串在字符串中出现的次数,其中输入中0表示可以覆盖着出现,1表示不能
思路:如果没有1那种情况就是裸题,1的情况下
用last[i]记录Trie节点i在上一次匹配时所对应的字符在文本串中的位置。
用pos[i]记录Trie节点i所对应的字符在模式串中的位置。
没有重叠的判断 —— 当前字符位置 - last[当前节点] >= pos[当前节点]。
abababac - aba
pos[1] = 1 pos[2] = 2 pos[3] = 3
i = 4时,last[3] = 2 pos[3] = 3 而i - last[3] < pos[3] 所以不行
3再往前到1,last[1] = 2 pos[1] = 1 可以了,然后last[1] = 4,节点1匹配到了文本串中的第4位
太高端了。。。。
卡数组大小,记得开n*len的
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using namespace std; typedef long long LL; typedef long double LD; const int SZ = 600100; char keystr[10]; int tot; int fail[SZ]; int ch[SZ][30], idx[SZ], cnt[2][SZ]; int last[SZ], pos[SZ], typ[SZ]; char str[100005]; void insert(char s[], int id) { int p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = s[i] - 'a'; if(!ch[p][c]) ch[p][c] = ++tot; p = ch[p][c]; pos[p] = i+1; } idx[id] = p; } queue<int> q; void getfail() { fail[0] = 0; q.push(0); while(q.size()) { int u = q.front(); q.pop(); for(int i = 0; i < 26; i++) { if(ch[u][i]) { if(u == 0) fail[ch[u][i]] = 0; else { int v = fail[u]; while(v && ch[v][i] == 0) v = fail[v]; fail[ch[u][i]] = ch[v][i]; } q.push(ch[u][i]); } else ch[u][i] = ch[fail[u]][i]; } } } void match(char s[]) { int p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = s[i] - 'a'; p = ch[p][c]; int v = p; while(v) { cnt[0][v]++; if(i - last[v] >= pos[v]) { cnt[1][v]++; last[v] = i; } v = fail[v]; } } } void init() { tot = 0; memset(cnt, 0, sizeof(cnt)); memset(ch, 0, sizeof(ch)); memset(last, -1, sizeof(last)); memset(pos, 0, sizeof(pos)); } int main() { int n, tt = 0; while(~scanf("%s", str)) { init(); scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d %s", &typ[i], keystr); insert(keystr, i); } getfail(); match(str); printf("Case %d ", ++tt); for(int i = 0; i < n; i++) printf("%d ", cnt[typ[i]][idx[i]]); printf(" "); } return 0; }
HDU 2457 AC自动机+DP
题意:给n种病毒序列(只含ACGT),给一串基因,为最少修改多少个碱基(?)能使得其中不含病毒,如果不能做到则输出-1
思路:考虑神仙DP
f[i][j] 表示文本串的前 i 个字符,处于 Trie 图的节点 j 且不 经过终止节点(危险节点)的最少修改个数
每个点的是否是终止节点:如果它或它顺着 fail 函数能达到 的点中有一个是终止节点,那么它也是终止节点
这个讲的蛮明白的:https://blog.csdn.net/human_ck/article/details/6577142
转移方程:dp[i+1][ch[p][j]] = min(dp[i+1][ch[p][j]], dp[i][p] + (j == c ? 0 : 1)); //j表示枚举把这个非危险节点的点修改成什么,如果和原来相同则操作数不变,如果不同则+1
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using namespace std; typedef long long LL; const int SZ = 1010; const int INF = 1000000100; char keystr[22]; int tot; int fail[SZ]; int ch[SZ][6], dp[1010][SZ]; char str[1005]; bool flag[SZ]; int tran(char c) { if(c == 'A') return 1; if(c == 'G') return 2; if(c == 'C') return 3; if(c == 'T') return 4; } void insert(char s[]) { int p = 0; int len = strlen(s); for(int i = 0; i < len; i++) { int c = tran(s[i]); if(!ch[p][c]) ch[p][c] = ++tot; p = ch[p][c]; } flag[p] = true; } queue<int> q; void getfail() { fail[0] = 0; q.push(0); while(q.size()) { int u = q.front(); q.pop(); for(int i = 1; i <= 4; i++) { if(ch[u][i]) { if(u == 0) fail[ch[u][i]] = 0; else { int v = fail[u]; while(v && ch[v][i] == 0) v = fail[v]; fail[ch[u][i]] = ch[v][i]; } if(flag[fail[ch[u][i]]]) flag[ch[u][i]] = true; q.push(ch[u][i]); } else ch[u][i] = ch[fail[u]][i]; } } } void match(char s[]) { int p = 0; int len = strlen(s); for(int i = 0; i <= len; i++) for(int j = 0; j <= tot; j++) dp[i][j] = INF; dp[0][0] = 0; for(int i = 0; i < len; i++) { int c = tran(s[i]); for(p = 0; p <= tot; p++) { if(dp[i][p] == INF) continue; for(int j = 1; j <= 4; j++) { if(flag[ch[p][j]]) continue; dp[i+1][ch[p][j]] = min(dp[i+1][ch[p][j]], dp[i][p] + (j == c ? 0 : 1)); } } } } void init() { tot = 0; memset(ch, 0, sizeof(ch)); memset(fail, 0, sizeof(fail)); memset(flag, false, sizeof(flag)); } int main() { int n, tt = 0; while(scanf("%d", &n) && n) { init(); for(int i = 1; i <= n; i++) { scanf("%s", keystr); insert(keystr); } getfail(); scanf("%s", str); int len = strlen(str); match(str); int minn = INF; for(int i = 0; i <= tot; i++) if(!flag[i]) minn = min(minn, dp[len][i]); if(minn == INF) minn = -1; printf("Case %d: %d ", ++tt, minn); } return 0; }
OTZ