• 内核链表list.h


    #ifndef _LINUX_LIST_H
    #define _LINUX_LIST_H
    
    /*
    * Simple doubly linked list implementation.
    *
    * Some of the internal functions ("__xxx") are useful when
    * manipulating whole lists rather than single entries, as
    * sometimes we already know the next/prev entries and we can
    * generate better code by using them directly rather than
    * using the generic single-entry routines.
    */
    
    struct list_head
    {
    struct list_head *next, *prev;
    };
    
    #define LIST_HEAD_INIT(name) { &(name), &(name) }
    
    #define LIST_HEAD(name) 
    struct list_head name = LIST_HEAD_INIT(name)
    
    #define INIT_LIST_HEAD(ptr) do { 
    (ptr)->next = (ptr); (ptr)->prev = (ptr); 
    } while (0)
    
    /*
    * Insert a new entry between two known consecutive entries. 
    *
    * This is only for internal list manipulation where we know
    * the prev/next entries already!
    */
    static __inline__ void __list_add(struct list_head * new,
    struct list_head * prev,
    struct list_head * next)
    {
    next->prev = new;
    new->next = next;
    new->prev = prev;
    prev->next = new;
    }
    
    /**
    * list_add - add a new entry
    * @new: new entry to be added
    * @head: list head to add it after
    *
    * Insert a new entry after the specified head.
    * This is good for implementing stacks.
    */
    static __inline__ void list_add(struct list_head *new, struct list_head *head)
    {
    __list_add(new, head, head->next);
    }
    
    /**
    * list_add_tail - add a new entry
    * @new: new entry to be added
    * @head: list head to add it before
    *
    * Insert a new entry before the specified head.
    * This is useful for implementing queues.
    */
    static __inline__ void list_add_tail(struct list_head *new, struct list_head *head)
    {
    __list_add(new, head->prev, head);
    }
    
    /*
    * Delete a list entry by making the prev/next entries
    * point to each other.
    *
    * This is only for internal list manipulation where we know
    * the prev/next entries already!
    */
    static __inline__ void __list_del(struct list_head * prev,
    struct list_head * next)
    {
    next->prev = prev;
    prev->next = next;
    }
    
    /**
    * list_del - deletes entry from list.
    * @entry: the element to delete from the list.
    * Note: list_empty on entry does not return true after this, the entry is in an undefined state.
    */
    static __inline__ void list_del(struct list_head *entry)
    {
    __list_del(entry->prev, entry->next);
    entry->next = entry->prev = 0;
    }
    
    /**
    * list_del_init - deletes entry from list and reinitialize it.
    * @entry: the element to delete from the list.
    */
    static __inline__ void list_del_init(struct list_head *entry)
    {
    __list_del(entry->prev, entry->next);
    INIT_LIST_HEAD(entry); 
    }
    
    /**
    * list_empty - tests whether a list is empty
    * @head: the list to test.
    */
    static __inline__ int list_empty(struct list_head *head)
    {
    return head->next == head;
    }
    
    static __inline__ int list_is_last(const struct list_head *list,
    const struct list_head *head)
    {
    return list->next == head;
    }
    
    /**
    * list_splice - join two lists
    * @list: the new list to add.
    * @head: the place to add it in the first list.
    */
    static __inline__ void list_splice(struct list_head *list, struct list_head *head)
    {
    struct list_head *first = list->next;
    
    if (first != list)
    {
    struct list_head *last = list->prev;
    struct list_head *at = head->next;
    
    first->prev = head;
    head->next = first;
    
    last->next = at;
    at->prev = last;
    }
    }
    
    /**
    * list_entry - get the struct for this entry
    * @ptr:    the &struct list_head pointer.
    * @type:    the type of the struct this is embedded in.
    * @member:    the name of the list_struct within the struct.
    */
    #define list_entry(ptr, type, member) 
    ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
    
    /**
    * list_for_each    -    iterate over a list
    * @pos:    the &struct list_head to use as a loop counter.
    * @head:    the head for your list.
    */
    #define list_for_each(pos, head) 
    for (pos = (head)->next ; pos != (head); 
    pos = pos->next)
    
    /**
    * list_for_each_prev    -    iterate over a list
    * @pos:    the &struct list_head to use as a loop counter.
    * @head:    the head for your list.
    */
    #define list_for_each_prev(pos, head) 
    for (pos = (head)->prev; pos != (head); 
    pos = pos->prev)
    
    /**
    * list_for_each_safe    -    iterate over a list safe against removal of list entry
    * @pos:    the &struct list_head to use as a loop counter.
    * @n:     another &struct list_head to use as temporary storage
    * @head:    the head for your list.
    */
    #define list_for_each_safe(pos, n, head) 
    for (pos = (head)->next, n = pos->next; pos != (head); 
    pos = n, n = pos->next)
    
    /**
    * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
    * @pos:    the &struct list_head to use as a loop cursor.
    * @n:     another &struct list_head to use as temporary storage
    * @head:    the head for your list.
    */
    #define list_for_each_prev_safe(pos, n, head) 
    for (pos = (head)->prev, n = pos->prev; 
    pos != (head); 
    pos = n, n = pos->prev)
    
    #endif
    
     

    list_for_each()与list_for_each_safe()的区别

    参考:

    http://blog.csdn.net/choice_jj/article/details/7496732

    http://stackoverflow.com/questions/9207850/why-do-we-need-list-for-each-safe-in-for-deleting-nodes-in-kernel-linked-list

    由上面两个对比来看,list_for_each_safe()函数比list_for_each()多了一个中间变量n。

    当在遍历的过程中需要删除结点时,来看一下会出现什么情况:

    list_for_each():list_del(pos)将pos的前后指针指向undefined state,导致kernel panic,另如果list_del_init(pos)将pos前后指针指向自身,导致死循环。

    list_for_each_safe():首先将pos的后指针缓存到n,处理一个流程后再赋回pos,避免了这种情况发生。

    因此之遍历链表不删除结点时,可以使用list_for_each(),而当由删除结点操作时,则要使用list_for_each_safe()。

    其他带safe的处理也是基于这个原因。

  • 相关阅读:
    Ubuntu系统
    demo日常报错
    python 实现两个多维数组去重处理
    奔跑检测
    安装Win11如何绕过TPM2.0的安全限制?
    Nginx的Rewrite
    gvim 配置
    Tokyo Cabinet和Tokyo Tyrant及PHP扩展包的安装
    fm rf 删除 恢复
    提高页面loadtime的几个方法
  • 原文地址:https://www.cnblogs.com/pengdonglin137/p/3384279.html
Copyright © 2020-2023  润新知