• analyse chinese


    转载
    
    #!/usr/bin/env python
    #-*-coding=gbk-*-
    
    """
         原始数据,用于建立模型
    """
    #缩水版的courses,实际数据的格式应该为 课程名	课程简介	课程详情,并已去除html等干扰因素
    courses = [           
                u'Writing II: Rhetorical Composing',
                u'Genetics and Society: A Course for Educators',
                u'General Game Playing',
                u'Genes and the Human Condition (From Behavior to Biotechnology)',
                u'A Brief History of Humankind',
                u'New Models of Business in Society',
                u'Analyse Numrique pour Ingnieurs',
                u'Evolution: A Course for Educators',
                u'Coding the Matrix: Linear Algebra through Computer Science Applications',
                u'The Dynamic Earth: A Course for Educators',
                u'Tiny Wings	You have always dreamed of flying - but your wings are tiny. Luckily the world is full of beautiful hills. Use the hills as jumps - slide down, flap your wings and fly! At least for a moment - until this annoying gravity brings you back down to earth. But the next hill is waiting for you already. Watch out for the night and fly as fast as you can. ',
                u'Angry Birds Free',
                u'没有它很相似',
                u'没有	它很相似',
                u'没有	他很相似',
                u'没有	他不很相似',
                u'没有',
                u'可以没有',
                u'也没有',
                u'有没有也不管',
                u'Angry Birds Stella',
                u'Flappy Wings - FREE	Fly into freedom!A parody of the #1 smash hit game!',
                u'没有一个',    
                u'没有一个2',
               ]
    
    #只是为了最后的查看方便
    #实际的 courses_name = [course.split('	')[0] for course in courses]
    courses_name = courses
    
    
    """
        预处理(easy_install nltk)
    """
    def pre_process_cn(courses, low_freq_filter = True):
        """
         简化的 中文+英文 预处理
            1.去掉停用词
            2.去掉标点符号
            3.处理为词干
            4.去掉低频词
    
        """
        import nltk
        import jieba.analyse
        from nltk.tokenize import word_tokenize
       
        texts_tokenized = []
        for document in courses:
            texts_tokenized_tmp = []
            for word in word_tokenize(document):
                texts_tokenized_tmp += jieba.analyse.extract_tags(word,10)
            texts_tokenized.append(texts_tokenized_tmp)   
       
        texts_filtered_stopwords = texts_tokenized
    
        #去除标点符号
        english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
        texts_filtered = [[word for word in document if not word in english_punctuations] for document in texts_filtered_stopwords]
    
        #词干化
        from nltk.stem.lancaster import LancasterStemmer
        st = LancasterStemmer()
        texts_stemmed = [[st.stem(word) for word in docment] for docment in texts_filtered]
       
        #去除过低频词
        if low_freq_filter:
            all_stems = sum(texts_stemmed, [])
            stems_once = set(stem for stem in set(all_stems) if all_stems.count(stem) == 1)
            texts = [[stem for stem in text if stem not in stems_once] for text in texts_stemmed]
        else:
            texts = texts_stemmed
        return texts
    
    lib_texts = pre_process_cn(courses)
    
    
    
    """
        引入gensim,正式开始处理(easy_install gensim)
    """
    
    def train_by_lsi(lib_texts):
        """
            通过LSI模型的训练
        """
        from gensim import corpora, models, similarities
    
        #为了能看到过程日志
        #import logging
        #logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
    
        dictionary = corpora.Dictionary(lib_texts)
        corpus = [dictionary.doc2bow(text) for text in lib_texts]     #doc2bow(): 将collection words 转为词袋,用两元组(word_id, word_frequency)表示
        tfidf = models.TfidfModel(corpus)
        corpus_tfidf = tfidf[corpus]
    
        #拍脑袋的:训练topic数量为10的LSI模型
        lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=10)
        index = similarities.MatrixSimilarity(lsi[corpus])     # index 是 gensim.similarities.docsim.MatrixSimilarity 实例
       
        return (index, dictionary, lsi)
    
       
    #库建立完成 -- 这部分可能数据很大,可以预先处理好,存储起来
    (index,dictionary,lsi) = train_by_lsi(lib_texts)
       
       
    #要处理的对象登场
    target_courses = [u'没有']
    target_text = pre_process_cn(target_courses, low_freq_filter=False)
    
    
    """
    对具体对象相似度匹配
    """
    
    #选择一个基准数据
    ml_course = target_text[0]
    
    #词袋处理
    ml_bow = dictionary.doc2bow(ml_course)  
    
    #在上面选择的模型数据 lsi 中,计算其他数据与其的相似度
    ml_lsi = lsi[ml_bow]     #ml_lsi 形式如 (topic_id, topic_value)
    sims = index[ml_lsi]     #sims 是最终结果了, index[xxx] 调用内置方法 __getitem__() 来计算ml_lsi
    
    #排序,为输出方便
    sort_sims = sorted(enumerate(sims), key=lambda item: -item[1])
    
    #查看结果
    print sort_sims[0:10]   #看下前10个最相似的,第一个是基准数据自身
    print courses_name[sort_sims[1][0]]   #看下实际最相似的数据叫什么
    print courses_name[sort_sims[2][0]]   #看下实际最相似的数据叫什么
    print courses_name[sort_sims[3][0]]   #看下实际最相似的数据叫什么
    
    
  • 相关阅读:
    Jquery与mootools对比
    Maven + Eclipse + Tomcat
    一位老工程师前辈的忠告 (转载)
    如何利用JConsole观察分析JAVA程序的运行
    程序员该怎样放松?8个好网站推荐(转载)
    [转]关于程序员的59条搞笑但却真实无比的编程语录
    关于程序员的59条搞笑但却真实无比的编程语录
    [原]AppPoolService-IIS应用程序池辅助类(C#控制应用程序池操作)
    AppPoolService-IIS应用程序池辅助类(C#控制应用程序池操作)
    [译]C#控制管理VisualSVN Server
  • 原文地址:https://www.cnblogs.com/otfsenter/p/7634521.html
Copyright © 2020-2023  润新知