• numpy学习(四)


    练习篇(Part 4)

    41. How to sum a small array faster than np.sum? (★★☆)

    1 arr = np.arange(10)
    2 print(np.add.reduce(arr))

    运行结果:45

    42. Consider two random array A and B, check if they are equal (★★☆)

    1 arr1 = np.random.randint(0,2,4).reshape(2,2)
    2 arr2 = np.random.randint(0,2,4).reshape(2,2)
    3 print(arr1)
    4 print(arr2)
    5 print(np.allclose(arr1,arr2))
    6 print(np.array_equal(arr1,arr2))

    运行结果:

    [[0 1]
    [1 1]]
    [[1 0]
    [1 1]]
    False
    False

    43. Make an array immutable (read-only) (★★☆)

    1 arr = np.random.randint(1,2,(3,3))
    2 arr.flags.writeable = False
    3 arr[0][0] = 1

    运行结果:

     44. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)

    1 arr = np.random.randint(1,10,(10,2))
    2 x = arr[:,0]
    3 y = arr[:,1]
    4 R = np.sqrt(x**2+y**2)
    5 T = np.arctan2(y,x)
    6 print(R)
    7 print(T)

    运行结果:

    [ 8.94427191 9.21954446 9.89949494 10.63014581 7.07106781 9.21954446
    8.94427191 9.05538514 8.60232527 11.3137085 ]
    [0.46364761 0.21866895 0.78539816 0.71883 0.78539816 0.86217005
    1.10714872 0.11065722 0.62024949 0.78539816]

    45. Create random vector of size 10 and replace the maximum value by 0 (★★☆)

    1 arr = np.random.randint(1,10,10)
    2 print(arr)
    3 arr[arr.argmax()] = 0
    4 print(arr)

    运行结果:

    [3 4 7 9 4 2 4 4 2 8]
    [3 4 7 0 4 2 4 4 2 8]

    46. Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)

    1 arr = np.zeros((5,5),[('x',float),('y',float)])
    2 arr['x'],arr['y'] = np.meshgrid(np.linspace(0,1,5),np.linspace(0,1,5))
    3 print(arr)

    运行结果:

    [[(0. , 0. ) (0.25, 0. ) (0.5 , 0. ) (0.75, 0. ) (1. , 0. )]
    [(0. , 0.25) (0.25, 0.25) (0.5 , 0.25) (0.75, 0.25) (1. , 0.25)]
    [(0. , 0.5 ) (0.25, 0.5 ) (0.5 , 0.5 ) (0.75, 0.5 ) (1. , 0.5 )]
    [(0. , 0.75) (0.25, 0.75) (0.5 , 0.75) (0.75, 0.75) (1. , 0.75)]
    [(0. , 1. ) (0.25, 1. ) (0.5 , 1. ) (0.75, 1. ) (1. , 1. )]]

    47. Given two arrays, X and Y, construct the Cauchy matrix C (Cij =1/(xi - yj))

    1 arr1 = np.random.randint(5,10,5)
    2 arr2 = np.random.randint(1,5,5)
    3 print(arr1)
    4 print(arr2)
    5 arr3 = 1.0/np.subtract.outer(arr1,arr2)
    6 print(arr3)

    运行结果:

    [9 9 5 6 7]
    [2 3 1 4 1]
    [[0.14285714 0.16666667 0.125 0.2 0.125 ]
    [0.14285714 0.16666667 0.125 0.2 0.125 ]
    [0.33333333 0.5 0.25 1. 0.25 ]
    [0.25 0.33333333 0.2 0.5 0.2 ]
    [0.2 0.25 0.16666667 0.33333333 0.16666667]]

    48. Print the minimum and maximum representable value for each numpy scalar type (★★☆)

    1 for dtype in [np.int8, np.int32, np.int64]:
    2     print(np.iinfo(dtype).min)
    3     print(np.iinfo(dtype).max)
    4 for dtype in [np.float32, np.float64]:
    5     print(np.finfo(dtype).min)
    6     print(np.finfo(dtype).max)

    运行结果:

    -128
    127
    -2147483648
    2147483647
    -9223372036854775808
    9223372036854775807
    -3.4028235e+38
    3.4028235e+38
    -1.7976931348623157e+308
    1.7976931348623157e+308

    49. How to print all the values of an array? (★★☆)

    1 arr = np.random.randint(1,10,9).reshape(3,3)
    2 print(arr)

    运行结果:

    [[5 3 4]
    [9 2 9]
    [6 6 4]]

    50. How to find the closest value (to a given scalar) in a vector? (★★☆)

    1 arr1 = np.arange(100)
    2 arr2 = np.random.uniform(0,100)
    3 index = (np.abs(arr1-arr2)).argmin()
    4 print(arr1)
    5 print(arr2)
    6 print(arr1[index])

    运行结果:

    [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
    24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    96 97 98 99]
    46.27162981393338
    46

  • 相关阅读:
    完美主义之我见
    职场-位置思维
    我的读书观
    人力资源是组织的第一战略资源-论基层员工
    积累是做成事情得唯一途径
    地理信息数据处理之我见
    word 之 插入删除空行
    OSMeteorTranslationAPI(百度,有道)对比
    CsharpOSMeteorCodeGenerator(Metero代码生成器)
    HtmlDOM 文档读取研究
  • 原文地址:https://www.cnblogs.com/orangecyh/p/11594248.html
Copyright © 2020-2023  润新知