• GBDT 详解分析 转+整理


    GBDT

    GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

    • GBDT 主要由三个概念组成:
      • regression decision tree (DT)
      • Gradiant Boosting (GB)
      • Shrinkage (算法的一个重要演进分枝,目前大部分源码都按该版本实现)

    DT 回归树 Regression Decision Tree

    • 提起决策树(DT, Decision Tree) 绝大部分人首先想到的就是C4.5分类决策树。但如果一开始就把GBDT中的树想成分类树,那就是一条歪路走到黑,一路各种坑,最终摔得都要咯血了还是一头雾水说的就是LZ自己啊有木有。咳嗯,所以说千万不要以为GBDT是很多棵分类树。

    • 决策树分为两大类,回归树和分类树。前者用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;后者用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面。这里要强调的是,前者的结果加减是有意义的,如10岁+5岁-3岁=12岁,后者则无意义,如男+男+女=到底是男是女? GBDT的核心在于累加所有树的结果作为最终结果,就像前面对年龄的累加(-3是加负3),而分类树的结果显然是没办法累加的,所以GBDT中的树都是回归树,不是分类树, 这点对理解GBDT相当重要(尽管GBDT调整后也可用于分类但不代表GBDT的树是分类树)。那么回归树是如何工作的呢?

    • 下面我们以对人的性别判别/年龄预测为例来说明,每个instance都是一个我们已知性别/年龄的人,而feature则包括这个人上网的时长、上网的时段、网购所花的金额等。

    • 作为对比,先说分类树,我们知道C4.5分类树在每次分枝时,是穷举每一个feature的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的feature和阈值(熵最大的概念可理解成尽可能每个分枝的男女比例都远离1:1,其实应该使用特征选择的术语进行描述,应该使用信息增益或者信息增益比来表示) ,按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,则以多数人的性别作为该叶子节点的性别。(这个地方的熵最大可能没把问题解释清楚)

    • 回归树总体流程也是类似,不过在每个节点(不一定是叶子节点)都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是 最小化均方差--即(每个人的年龄-预测年龄)^2 的总和 / N ,或者说是每个人的预测误差平方和 除以 N。这很好理解,被预测出错的人数越多,错的越离谱,均方差就越大,通过最小化均方差能够找到最靠谱的分枝依据。分枝直到每个叶子节点上人的年龄都唯一(这太难了)或者达到预设的终止条件(如叶子个数上限),若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。若还不明白可以Google "Regression Tree",或阅读本文的第一篇论文中Regression Tree部分。

    梯度迭代

    • 好吧,我起了一个很大的标题,但事实上我并不想多讲Gradient Boosting的原理,因为不明白原理并无碍于理解GBDT中的Gradient Boosting。喜欢打破砂锅问到底的同学可以阅读这篇英文wikihttp://en.wikipedia.org/wiki/Gradient_boosted_trees#Gradient_tree_boosting

    • Boosting,迭代,即通过迭代多棵树来共同决策。这怎么实现呢?难道是每棵树独立训练一遍,比如A这个人,第一棵树认为是10岁,第二棵树认为是0岁,第三棵树认为是20岁,我们就取平均值10岁做最终结论?--当然不是!且不说这是投票方法并不是GBDT,只要训练集不变,独立训练三次的三棵树必定完全相同,这样做完全没有意义。之前说过,GBDT是把所有树的结论累加起来做最终结论的,所以可以想到每棵树的结论并不是年龄本身,而是年龄的一个累加量。GBDT的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。 比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学。这就是Gradient Boosting在GBDT中的意义,简单吧。

    GBDT工作过程实例

    1. 还是年龄预测,简单起见训练集只有4个人,A,B,C,D,他们的年龄分别是14,16,24,26。其中A、B分别是高一和高三学生;C,D分别是应届毕业生和工作两年的员工。

    2. 如果是用一棵传统的回归决策树来训练,会得到如下图1所示结果:

    3. 现在我们使用GBDT来做这件事,由于数据太少,我们限定叶子节点最多有两个,即每棵树都只有一个分枝,并且限定只学两棵树。我们会得到如下图2所示结果:

    4. 在第一棵树分枝和图1一样,由于A,B年龄较为相近,C,D年龄较为相近,他们被分为两拨,每拨用平均年龄作为预测值。此时计算残差(残差的意思就是: A的预测值 + A的残差 = A的实际值),所以A的残差就是16-15=1(注意,A的预测值是指前面所有树累加的和,这里前面只有一棵树所以直接是15,如果还有树则需要都累加起来作为A的预测值)。进而得到A,B,C,D的残差分别为-1,1,-1,1。然后我们拿残差替代A,B,C,D的原值,到第二棵树去学习,如果我们的预测值和它们的残差相等,则只需把第二棵树的结论累加到第一棵树上就能得到真实年龄了。这里的数据显然是我可以做的,第二棵树只有两个值1和-1,直接分成两个节点。此时所有人的残差都是0,即每个人都得到了真实的预测值。

    5. 换句话说,现在A,B,C,D的预测值都和真实年龄一致了。Perfect!:

      A: 14岁高一学生,购物较少,经常问学长问题;预测年龄A = 15 – 1 = 14

      B: 16岁高三学生;购物较少,经常被学弟问问题;预测年龄B = 15 + 1 = 16

      C: 24岁应届毕业生;购物较多,经常问师兄问题;预测年龄C = 25 – 1 = 24

      D: 26岁工作两年员工;购物较多,经常被师弟问问题;预测年龄D = 25 + 1 = 26

    6. 那么哪里体现了Gradient呢?其实回到第一棵树结束时想一想,无论此时的cost function是什么,是均方差还是均差,只要它以误差作为衡量标准,残差向量(-1, 1, -1, 1)都是它的全局最优方向,这就是Gradient。

    需要解释的三个问题

    讲到这里我们已经把GBDT最核心的概念、运算过程讲完了!没错就是这么简单。
    不过讲到这里很容易发现三个问题:
    
    既然图1和图2 最终效果相同,为何还需要GBDT呢?
    答案是过拟合。过拟合是指为了让训练集精度更高,
    学到了很多”仅在训练集上成立的规律“,导致换一个数据集当前规律就不适用了。
    其实只要允许一棵树的叶子节点足够多,训练集总是能训练到100%准确率的
    (大不了最后一个叶子上只有一个instance)。
    在训练精度和实际精度(或测试精度)之间,后者才是我们想要真正得到的。
    

    我们发现图1为了达到100%精度使用了3个feature(上网时长、时段、网购金额),
    其中分枝“上网时长>1.1h” 很显然已经过拟合了,这个数据集上A,B也许恰好A
    每天上网1.09h, B上网1.05小时,但用上网时间是不是>1.1小时来判断所有人
    的年龄很显然是有悖常识的;
    

    相对来说图2的boosting虽然用了两棵树 ,但其实只用了2个feature就搞定了,后一个
    feature是问答比例,显然图2的依据更靠谱。(当然,这里是LZ故意做的数据,所以才能
    靠谱得如此狗血。实际中靠谱不靠谱总是相对的) Boosting的最大好处在于,每一步的
    残差计算其实变相地增大了分错instance的权重,而已经分对的instance则都趋向于0。
    这样后面的树就能越来越专注那些前面被分错的instance。
    就像我们做互联网,总是先解决60%用户的需求凑合着,再解决35%用户的需求,最后才关
    注那5%人的需求。
    这样就能逐渐把产品做好,因为不同类型用户需求可能完全不同,需要分别独立分析。
    如果反过来做,或者刚上来就一定要做到尽善尽美,往往最终会竹篮打水一场空。
    
    Gradient呢?不是“G”BDT么?
    到目前为止,我们的确没有用到求导的Gradient。在当前版本GBDT描述中,的确没有用
    到Gradient,该版本用残差作为全局最优的绝对方向,并不需要Gradient求解.
    
    这不是boosting吧?Adaboost可不是这么定义的。
    • 这是boosting,但不是Adaboost。GBDT不是Adaboost Decistion Tree。就像提到决策树大家会想起C4.5,提到boost多数人也会想到Adaboost。Adaboost是另一种boost方法,它按分类对错,分配不同的weight,计算cost function时使用这些weight,从而让“错分的样本权重越来越大,使它们更被重视”。
    • Bootstrap也有类似思想,它在每一步迭代时不改变模型本身,也不计算残差,而是从N个instance训练集中按一定概率重新抽取N个instance出来(单个instance可以被重复sample),对着这N个新的instance再训练一轮。由于数据集变了迭代模型训练结果也不一样,而一个instance被前面分错的越厉害,它的概率就被设的越高,这样就能同样达到逐步关注被分错的instance,逐步完善的效果。Adaboost的方法被实践证明是一种很好的防止过拟合的方法,但至于为什么则至今没从理论上被证明。
    • GBDT也可以在使用残差的同时引入Bootstrap re-sampling,GBDT多数实现版本中也增加的这个选项,但是否一定使用则有不同看法。re-sampling一个缺点是它的随机性,即同样的数据集合训练两遍结果是不一样的,也就是模型不可稳定复现,这对评估是很大挑战,比如很难说一个模型变好是因为你选用了更好的feature,还是由于这次sample的随机因素。

    GBDT的适用范围

    该版本GBDT几乎可用于所有回归问题(线性/非线性),相对logistic regression仅能用于线性回归,GBDT的适用面非常广。亦可用于二分类问题(设定阈值,大于阈值为正例,反之为负例)。根据sklearn官网上的说明,对于多分类的数据:

    The advantages of GBRT are:

    • Natural handling of data of mixed type (= heterogeneous features)
    • Predictive power
    • Robustness to outliers in output space (via robust loss functions)

    The disadvantages of GBRT are:

    • Scalability, due to the sequential nature of boosting it can hardly be parallelized.
  • 相关阅读:
    鼠标不灵了,还好只是线的问题。自己DIY修下了
    [摘]编译MPlayer
    TPLINK路由器 硬重启方法
    Visual C++线程同步技术剖析 (转载)
    CListCtrl一行显示多个图标问题
    一位软件工程师的6年总结
    CCIE红头发讲解CCNA、CCNP视频教程
    图片链
    [摘]如何级联两个TPLINK路由器
    [摘]测试一下你对IP地址的掌握水平
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/9790772.html
Copyright © 2020-2023  润新知