• P4332 [SHOI2014]三叉神经树


    (color{#0066ff}{ 题目描述 })

    1. 计算神经学作为新兴的交叉学科近些年来一直是学术界的热点。一种叫做SHOI 的神经组织因为其和近日发现的化合物 SHTSC 的密切联系引起了人们的极大关注。

      SHOI 组织由若干个 SHOI 细胞构成,SHOI 细胞之间形成严密的树形结构。每个 SHOI 细胞都有且只有一个输出端,被称为轴突,除了一个特殊的、被称为根细胞的 SHOI 细胞的输出作为整个组织的输出以外,其余细胞的轴突均连向其上级 SHOI 细胞;并且有且只有三个接收端,被称为树突,从其下级细胞或者其它神经组织那里接收信息。SHOI 细胞的信号机制较为简单,仅有 (0)(1)两种。每个 SHOI 细胞根据三个输入端中 (0)(1)信号的多寡输出较多的那一种。

      现在给出了一段 SHOI 组织的信息,以及外部神经组织的输入变化情况。请你模拟 SHOI 组织的输出结果。

    (color{#0066ff}{输入格式})

    1. 输入的第一行包含一个整数 (n)。表示 SHOI 组织的总细胞个数。SHOI 细胞由 (1)~ (n) 编号,编号为 (1) 的是根细胞。

      从第二行开始的 (n)行,每行三个整数 (x_1, x_2, x_3),分别表示编号为 (1)~ (n) 的 SHOI 细胞的树突连接。(1 < x_i leq n) 表示连向编号为 (x_i) 的细胞的轴突, (n < x_i leq 3n+1) 表示连向编号为 (x_i) 的外界输入。输入数据保证给出的 SHOI 组织是合法的,且所有的 (x_i) 两两不同。

      接下来一行包含 (2n+1)(0/1) 的整数,表示初始时的外界输入。

      (n+3)行有一个整数 (q),表示总操作数。

      之后 (q) 行每行一个整数 (x),表示编号为 (x) 的外界输入发生了变化。

    (color{#0066ff}{输出格式})

    输出 (q) 行,每行一个整数,对应第 (i) 次外界输入变化后的根细胞的输出。

    (color{#0066ff}{输入样例})

    3
    2 3 4
    5 6 7
    8 9 10
    0 0 0 0 1 1 1
    5
    4
    4
    5
    6
    8
    

    (color{#0066ff}{输出样例})

    1
    0
    0
    1
    1
    

    (color{#0066ff}{数据范围与提示})

    对于 (10 \%)的数据, (n leq 1000, q leq 1000)

    对于 (30 \%)的数据, (n leq 100000, q leq 100000)

    对于 (100 \%)的数据, (n leq 500000, q leq 500000)

    (color{#0066ff}{ 题解 })

    这毒瘤题读了半天没看懂啥意思,现在简单概括一下题意

    给你一颗三叉树(类比二叉树qwq),1为根,前n个点每个点有三个孩子,(n+1 o3n)这些点为叶子节点,然后给你所有叶子的权值0/1,定义(1-n)点的权值为,三个孩子中权为1的孩子的个数是否大于1,如果是则权值为1,否则为0。现在给你一些操作,每次让一个叶子的权值异或1,每次操作输出根的权值

    我们考虑每次操作对答案的影响,设(v_i)为i有多少个权值为1的孩子(v_iin [0,3])

    如果当前点权值由0变1,那么什么情况下父亲的权值也会改变呢

    显然当且仅当父亲的v=1,那么加上自己的改变, 父亲的v变为2,这时父亲的权值也从原来的0变为1,这就是一个子问题了

    同理,如果是1变0, 当且仅当父亲的v=2时父亲也会改变

    那么,我们可以得到一个结论,每次修改一个点产生的影响是从这个点向上一条连续v为1或2的链的权值的改变,只要这个链包括了1, 答案就会改变

    那么现在的问题是,怎么快速维护这个东西,我们需要快速找到一个点向上延伸1/2的最上面那个点,还有一条链的权值的修改

    可以用LCT维护这个东西, 显然不需要makeroot操作,那么翻转标记就没用了

    每个点维护两个点的指针,一个是最深的v!=1的点,一个是最深的v!=2的点

    这个点实际上就是延伸的链顶的父亲

    为什么要最深? 因为要保证下面的1/2连续

    怎么维护? 因为要最深,所以在splay上,先考虑右儿子,然后是自己,最后是左儿子

    如果这个点存在,那么就对答案没有影响(仔细想想),我们把这个点转上去,那么实际上就是当前点的单点修改,右子树整体的修改,这个打标记即可,注意v改变了,n1和n2要互换!

    如果不存在呢,说明此链一直延伸到根,那么直接对整个splay打标记,并把答案修改即可

    这题就没了。。。

    发现实际上每个点的权值就是(frac v 2),所以直接维护v就行了

    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 5e5 + 3;
    const int maxm = 1.5e6 + 3;
    struct node {
    	node *ch[2], *fa, *n1, *n2;
    	int val, tag;
    	node(int val = 0, int tag = 0): val(val), tag(tag) {
    		ch[0] = ch[1] = fa = n1 = n2 = NULL;
    	}
    	void trn() { std::swap(n1, n2); val ^= 3; tag ^= 1; }
    	void dwn() {
    		if(!tag) return;
    		if(ch[0]) ch[0]->trn();
    		if(ch[1]) ch[1]->trn();
    		tag = 0;
    	}
    	void upd() {
    		n1 = n2 = NULL;  //这行不能少!
            //右根左这样找
    		if(ch[1]) n1 = ch[1]->n1;
    		if(!n1) n1 = this->val == 1? NULL : this;
    		if(ch[0] && !n1) n1 = ch[0]->n1;
    		if(ch[1]) n2 = ch[1]->n2;
    		if(!n2) n2 = this->val == 2? NULL : this;
    		if(ch[0] && !n2) n2 = ch[0]->n2;
    	}
    	bool isr() { return this == fa->ch[1]; }
    	bool ntr() { return fa && (fa->ch[1] == this || fa->ch[0] == this); }
    }pool[maxn];
    int fa[maxm], val[maxm], du[maxm];
    int n, ans;
    void toposort() {
    	std::queue<int> q;
    	for(int i = n + 1; i <= 3 * n + 1; i++) val[i] = in() << 1, q.push(i);
    	while(!q.empty()) {
    		int tp = q.front(); q.pop();
    		if(tp <= n) pool[tp].upd(), pool[tp].fa = pool + fa[tp];
    		pool[fa[tp]].val += (tp > n? val[tp] : pool[tp].val) >> 1;
    		du[fa[tp]]--;
    		if(!du[fa[tp]]) q.push(fa[tp]);
    	}
    	pool[1].fa = NULL;
    }
    void rot(node *x) {
    	node *y = x->fa, *z = y->fa;
    	bool k = x->isr(); node *w = x->ch[!k];
    	if(y->ntr()) z->ch[y->isr()] = x;
    	(x->ch[!k] = y)->ch[k] = w;
    	(y->fa = x)->fa = z;
    	if(w) w->fa = y;
    	y->upd(), x->upd();
    }
    void splay(node *o) {
    	static node *st[maxn];
    	int top;
    	st[top = 1] = o;
    	while(st[top]->ntr()) st[top + 1] = st[top]->fa, top++;
    	while(top) st[top--]->dwn();
    	while(o->ntr()) {
    		if(o->fa->ntr()) rot(o->isr() ^ o->fa->isr()? o : o->fa);
    		rot(o);
    	}
    }
    
    void access(node *x) {
    	for(node *y = NULL; x; x = (y = x)->fa)
    		splay(x), x->ch[1] = y, x->upd();
    }
    
    int main() {
    	n = in();
    	for(int i = 1; i <= n; i++) du[fa[in()] = fa[in()] = fa[in()] = i] = 3;
    	toposort();//求初始的答案
    	ans = pool[1].val >> 1;
    	int x, tp;
    	for(int T = in(); T --> 0;) {
    		tp = (val[x = in()] ^= 2) >> 1;
    		access(pool + (x = fa[x])), splay(pool + x);  
    		node *o = pool + x;
    		node *nr = tp? o->n1 : o->n2;  //找最深的点
    		if(nr) {
    			splay(nr);
    			if(nr->ch[1]) nr->ch[1]->trn(), nr->ch[1]->upd();
    			nr->val += tp? 1 : -1;
    			nr->upd();
    		}
    		else ans ^= 1, o->trn(), o->upd();
    		printf("%d
    ", ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    生信入门-爱课程上的华中农业大学
    PAT 1115 Counting Nodes in a BST[构建BST]
    PAT 1133 Splitting A Linked List[链表][简单]
    PAT 1037 Magic Coupon[dp]
    PAT 1033 To Fill or Not to Fill[dp]
    畅通工程续 HDU1874
    Free DIY Tour HDU1224
    六度分离 HDU1869
    Arbitrage HDU1217
    floyed算法
  • 原文地址:https://www.cnblogs.com/olinr/p/10391914.html
Copyright © 2020-2023  润新知