Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an integer m and asks for the number of positive integers n, such that the factorial of n ends with exactly m zeroes. Are you among those great programmers who can solve this problem?
The only line of input contains an integer m (1 ≤ m ≤ 100 000) — the required number of trailing zeroes in factorial.
First print k — the number of values of n such that the factorial of n ends with mzeroes. Then print these k integers in increasing order.
Input
1
Output
5 5 6 7 8 9
Input
5
Output
0
The factorial of n is equal to the product of all integers from 1 to n inclusive, that is n! = 1·2·3·...·n.
In the first sample, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320 and 9! = 362880.
#include<queue> #include<stack> #include<vector> #include<math.h> #include<stdio.h> #include<numeric>//STL数值算法头文件 #include<stdlib.h> #include<string.h> #include<iostream> #include<algorithm> #include<functional>//模板类头文件 using namespace std; const int INF=0x3f3f3f3f; const int maxn=500100; int m,cnt; int num[maxn],a[maxn]; int fun(int n) { int ans=0; while(n) { n/=5; ans+=n; } return ans; } int main() { for(int i=0; i<maxn; i++) a[i]=fun(i); while(~scanf("%d",&m)) { cnt=0; int i; for(i=0; i<maxn; i++) { if(a[i]==m) { num[cnt++]=i; } } printf("%d ",cnt); if(cnt) { for(i=0; i<cnt; i++) { if(i) printf(" "); printf("%d",num[i]); } printf(" "); } } return 0; } #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int MAXN = 1e9; int fun(int n) { int cnt = 0; while(n) { n/=5; cnt+=n; } return cnt; } int Two(int l, int r, int m) { int ans = 0; while(r >= l) { int mid = (l + r) >> 1; int res = fun(mid); if(res < m) l = mid + 1; else if(res >= m) { r = mid - 1; ans = mid; } } return ans; } int main() { int m; while(cin >> m) { int l = 1, r = MAXN; int L = Two(l, r, m), R = Two(l, r, m+1); if(L == 0 || fun(R-1) != m) cout << 0 << endl; else { cout << R - L << endl; for(int i = L; i <= R-1; i++) { if(i > L) cout << " "; cout << i; } cout << endl; } } return 0; }