• 深拷贝、浅拷贝


    一、浅拷贝

    • 浅拷贝是对于一个对象的顶层拷贝

    通俗的理解是:拷贝了引用,并没有拷贝内容

    二、深拷贝

    • 深拷贝是对于一个对象所有层次的拷贝(递归)

    进一步理解拷贝

    In [23]: a = [11,22,33]
    
    In [24]: b = [44,55,66]
    
    In [25]: c = (a,b)
    
    In [26]: e = copy.deepcopy(c)
    
    In [27]: a.append(77)
    
    In [28]: a
    Out[28]: [11, 22, 33, 77]
    
    In [29]: b
    Out[29]: [44, 55, 66]
    
    In [30]: c
    Out[30]: ([11, 22, 33, 77], [44, 55, 66])
    
    In [31]: e
    Out[31]: ([11, 22, 33], [44, 55, 66])
    
    In [32]: 
    
    In [32]: 
    
    In [32]: f = copy.copy(c)
    
    In [33]: a.append(88)
    
    In [34]: a
    Out[34]: [11, 22, 33, 77, 88]
    
    In [35]: b
    Out[35]: [44, 55, 66]
    
    In [36]: c
    Out[36]: ([11, 22, 33, 77, 88], [44, 55, 66])
    
    In [37]: e
    Out[37]: ([11, 22, 33], [44, 55, 66])
    
    In [38]: f
    Out[38]: ([11, 22, 33, 77, 88], [44, 55, 66])
    

    三、拷贝的其他方式

    浅拷贝对不可变类型和可变类型的copy不同
    In [88]: a = [11,22,33]
    
    In [89]: b = copy.copy(a)
    
    In [90]: id(a)
    Out[90]: 59275144
    
    In [91]: id(b)
    Out[91]: 59525600
    
    In [92]: a.append(44)
    
    In [93]: a
    Out[93]: [11, 22, 33, 44]
    
    In [94]: b
    Out[94]: [11, 22, 33]
    
    In [95]:
    
    In [95]:
    
    In [95]: a = (11,22,33)
    
    In [96]: b = copy.copy(a)
    
    In [97]: id(a)
    Out[97]: 58890680
    
    In [98]: id(b)
    Out[98]: 58890680
    
    • 分片表达式可以赋值一个序列
        a = "abc"
    
        b = a[:]
    
    • 字典的copy方法可以拷贝一个字典
        d = dict(name="zhangsan", age=27)
    
        co = d.copy()
    
    • 有些内置函数可以生成拷贝(list)
        a = list(range(10))
    
        b = list(a)
    
    • copy模块中的copy函数
        import copy
    
        a = (1,2,3)
    
        b = copy.copy(a)
    
  • 相关阅读:
    从 JavaScript 到 TypeScript 系列
    有了 indexOf,为什么 ECMAScript 7 还添加了 Array.prototype.include
    网站部署 HTTPS 中需要做的事情
    从 HTTP 到 HTTPS
    从 HTTP 到 HTTPS
    co.js
    记jQuery.fn.show的一次踩坑和问题排查
    JavaScript
    二、HttpClient
    1、网络爬虫
  • 原文地址:https://www.cnblogs.com/mxsf/p/10374417.html
Copyright © 2020-2023  润新知