• 导数的定义、性质及计算(导数的定义式计算)


    • 导数,derivative,
      • first derivative:一阶导,second derivative:二阶导,
      • which derivative:几阶导?
      • a derivative:一个导数,并不确定阶数
    • |x| 的导数,sign(x)(在 x=0 处没有定义)

    1. 定义

    设函数 y=f(x) 在点 x0 的某个邻域内有定义,当自变量 xx0 处有增量 Δxx0+Δx也在该邻域时,对应的函数取得增量 Δy=f(x0+Δx)f(x0)。如果 ΔyΔx 之比,当 Δx0 时,极限存在,则称函数 f(x)x0 处可导(仅在 x0 这一点处,并不保证在所有点处),并称这个极限为函数 y=f(x) 在点 x0 处的导数记为 f(x0),即:

    f(x0)=limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx

    例:给定一个函数 f 及自变量 x,定义:

    Q(h)f(x2h)+16f(xh)30f(x)+16f(x+h)f(x+2h)12h2

    Q(h)f 的几阶导数?

    Q(h)===f(x2h)+16f(xh)30f(x)+16f(x+h)f(x+2h)12h2(f(xh)f(x2h))15(f(x)f(xh)f(x+h)+f(x))12h2+(f(x+2h)f(x+h))12h2f(x2h)15f(xh)+15f(x)f(x+h)12h15f′′(xh)3f′′(x2h)12=f′′

    2. Δ

    • :梯度算子(gradient operator)
    • Δ:delta,变化量;

    考察下面(二元函数导数)的定义:

    limΔx0ΔfΔx=limΔx0f(x+Δx)f(x)Δx=f(x)

    任取一个比较小的变化 Δx,则有:

    Δff(x+Δx)f(x)=ΔxTf(x)

    • f(x)=(fx1,fx2)T
    • ΔfΔxTf(x)=fx1Δx1+fx1Δx1

    3. 导数的计算

    f(x)={x2sin(1/x)0if x0if x=0

    x=0 处是可微的,根据导数的定义:

    f(0)=limh0f(0+h)f(0)h=h2sin(1/h)0h=0

    然而,对于 x0

    f(x)=2xsin(1/x)cos(1/x)

    x0 时是没有极限的(cos(1/x) 一直在震荡)。

  • 相关阅读:
    [POJ] 食物链
    [POJ] Palindrome
    [POJ] The Triangle
    [Cpp primer] Library vector Type
    Shift Operations on C
    Masking operations
    [CSAPP] The Unicode Standard for text coding
    [Cpp primer] Library string Type
    [Cpp primer] range for (c++11)
    [Cpp primer] Namespace using Declarations
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9423260.html
Copyright © 2020-2023  润新知