分布式寻址算法
- hash 算法(大量缓存重建)
- 一致性 hash 算法(自动缓存迁移)+ 虚拟节点(自动负载均衡)
- redis cluster 的 hash slot 算法
一、hash 算法
来了一个请求,首先对key计算 hash 值,然后对节点数取模。然后打在不同的 master 节点上。
- 存在的问题
一旦某一个 master 节点宕机,所有新请求都会基于最新的剩余 master 节点数去取模,尝试去取数据,而取不到有效缓存,导致大量的流量涌入数据库。
二、一致性 hash 算法
将整个 hash 值空间组织成一个虚拟的圆环,整个空间按顺时针方向组织,下一步将各个 master 节点(使用服务器的 ip 或主机名)进行 hash。这样就能确定每个节点在其哈希环上的位置。
首先计算可以的hash 值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,遇到的第一个 master 节点就是 key 所在位置。
- 优势
在一致性哈希算法中,如果一个节点挂了,受影响的数据仅仅是此节点到环空间前一个节点(沿着逆时针方向行走遇到的第一个节点)之间的数据,其它不受影响。增加一个节点也同理。
- 存在的问题
一致性哈希算法在节点太少时,容易因为节点分布不均匀而造成缓存热点的问题。
- 应对方案
为了解决这种热点问题,一致性 hash 算法引入了虚拟节点机制,即对每一个节点计算多个 hash,每个计算结果位置都放置一个虚拟节点。这样就实现了数据的均匀分布,负载均衡。
三、redis cluster 的 hash slot 算法(虚拟桶)
redis cluster 有固定的 16384 个 hash slot,对每个 key 计算 CRC16 值,然后对 16384 取模,可以获取 key 对应的 hash slot。
redis cluster 中每个 master 都会持有部分 slot,比如有 3 个 master,那么可能每个 master 持有 5000 多个 hash slot。
hash slot 让 node 的增加和移除很简单:
-
增加一个 master,就将其他 master 的 hash slot 移动部分过去,
-
减少一个 master,就将它的 hash slot 移动到其他 master 上去。
优势
移动 hash slot 的成本是非常低的。客户端的 api,可以对指定的数据,让他们走同一个 hash slot,通过 hash tag 来实现。
任何一台机器宕机,另外两个节点,不影响的。因为 key 找的是 hash slot,不是机器。