• CF811E Vladik and Entertaining Flags


    嘟嘟嘟


    看题目这个架势,就知道要线段树,又看到维护联通块,那就得并查集。
    所以,线段树维护并查集。


    然而如果没想明白具体怎么写,就会gg的很惨……
    首先都容易想到维护区间联通块个数和区间端点两列的点,然后就是区间合并了。
    关键在于pushup,线段树是自底向上的,而并查集是自上而下的,因此,每到达一层,那么这一层的点就应该是每一个并查集的根节点,然后再考虑相邻的两个节点所在的联通块能否合并。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    #include<assert.h>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 1e5 + 5;
    const int maxN = 1e6 + 5;
    In ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    In void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    In void MYFILE()
    {
    #ifndef mrclr
      freopen(".in", "r", stdin);
      freopen(".out", "w", stdout);
    #endif
    }
    
    int n, m, q, a[12][maxn];
    
    int p[maxn * 10], cnt = 0;
    In int Find(int x) {return x == p[x] ? x : p[x] = Find(p[x]);}
    In bool merge(int x, int y)
    {
      int px = Find(x), py = Find(y);
      if(px == py) return 0;
      p[px] = py; return 1;
    }
    
    struct Tree
    {
      int l, r, sum;
      int L[12], R[12];
      friend In Tree operator + (Tree A, Tree B)
      {
        Tree ret;
        ret.l = A.l, ret.r = B.r;
        ret.sum = A.sum + B.sum;
        for(int i = 1; i <= n; ++i)
          {
    	p[A.L[i]] = A.L[i], p[A.R[i]] = A.R[i];
    	p[B.L[i]] = B.L[i], p[B.R[i]] = B.R[i];
          }
        for(int i = 1; i <= n; ++i)
          if(a[i][A.r] == a[i][B.l]) ret.sum -= merge(A.R[i], B.L[i]);
        for(int i = 1; i <= n; ++i)
          ret.L[i] = Find(A.L[i]), ret.R[i] = Find(B.R[i]);
        return ret;
      }
    }t[maxn << 2];
    In void build(int L, int R, int now)
    {
      t[now].l = L, t[now].r = R;
      if(L == R)
        {
          for(int i = 1; i <= n; ++i)
    	if(a[i][L] == a[i - 1][L]) t[now].L[i] = t[now].R[i] = t[now].L[i - 1];
    	else t[now].L[i] = t[now].R[i] = ++cnt, ++t[now].sum;
          return;
        }
      int mid = (L + R) >> 1;
      build(L, mid, now << 1);
      build(mid + 1, R, now << 1 | 1);
      t[now] = t[now << 1] + t[now << 1 | 1];
    }
    In Tree query(int L, int R, int now)
    {
      if(t[now].l == L && t[now].r == R) return t[now];
      int mid = (t[now].l + t[now].r) >> 1;
      if(R <= mid) return query(L, R, now << 1);
      else if(L > mid) return query(L, R, now << 1 | 1);
      else return query(L, mid, now << 1) + query(mid + 1, R, now << 1 | 1);
    }
    
    int main()
    {
      MYFILE();
      n = read(), m = read(), q = read();
      for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j) a[i][j] = read();
      build(1, m, 1);
      for(int i = 1; i <= q; ++i)
        {
          int L = read(), R = read();
          write(query(L, R, 1).sum), enter;
        }
      return 0;
    }
    
  • 相关阅读:
    P1182 数列分段`Section II`
    算法整理:Floyd_多源最短路
    【FBI WARNING】递归(高级数据结构的基础)
    【FBI WARNING】DP 从看透到看开
    两个例题
    结构体
    环状序列(Circular Sequence, ACM/ICPC Seoul 2004, UVa1584)
    生成元(Digit Generator, ACM/ICPC Seoul 2005, UVa1583)
    猜数字游戏的提示(Master-Mind Hints, UVa 340)
    回文词(Palindromes, UVa401)
  • 原文地址:https://www.cnblogs.com/mrclr/p/10979745.html
Copyright © 2020-2023  润新知