• luogu P4194 矩阵


    嘟嘟嘟


    先二分。
    令二分的值为(mid),则对于每一行都要满足(|sum_{i = 1} ^ {n} (A_{ij} - B_{ij})|),把绝对值去掉,就得到了((sum_{i = 1} ^ {n} A_{ij}) - mid leqslant sum_{i = 1} ^ {n} B_{ij} leqslant (sum_{i = 1} ^ {n} A_{ij}) + mid)。(列同理)
    这就很明显了,因为是网格图,所以每一行每一列看成一个点建立二分图,从源点向每一行连容量为([(sum_{i = 1} ^ {n} A_{ij}) - mid, (sum_{i = 1} ^ {n} A_{ij}) + mid])的边,然后每一列向汇点也这么连边。同时每一行向每一列连容量为([L,R])的边。
    然后跑上下界网络流。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 205;
    const int maxe = 1e6 + 5;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, m, l, r, s, t, S, T;
    int a[maxn][maxn], sumn[maxn], summ[maxn];
    struct Edge
    {
      int nxt, to, cap, flow;
    }e[maxe];
    int head[maxn << 1], ecnt = -1;
    In void addEdge(int x, int y, int w)
    {
      e[++ecnt] = (Edge){head[x], y, w, 0};
      head[x] = ecnt;
      e[++ecnt] = (Edge){head[y], x, 0, 0};
      head[y] = ecnt;
    }
    
    int dis[maxn << 1];
    In bool bfs()
    {
      Mem(dis, 0); dis[S] = 1;
      queue<int> q; q.push(S);
      while(!q.empty())
        {
          int now = q.front(); q.pop();
          for(int i = head[now], v; ~i; i = e[i].nxt)
    	{
    	  if(!dis[v = e[i].to] && e[i].cap > e[i].flow)
    	    dis[v] = dis[now] + 1, q.push(v);
    	}
        }
      return dis[T];
    }
    int cur[maxn << 1];
    In int dfs(int now, int res)
    {
      if(now == T || res == 0) return res;
      int flow = 0, f;
      for(int& i = cur[now], v; ~i; i = e[i].nxt)
        {
          if(dis[v = e[i].to] == dis[now] + 1 && (f = dfs(v, min(res, e[i].cap - e[i].flow))) > 0)
    	{
    	  e[i].flow += f; e[i ^ 1].flow -= f;
    	  flow += f; res -= f;
    	  if(res == 0) break;
    	}
        }
      return flow;
    }
    
    
    In int maxflow()
    {
      int flow = 0;
      while(bfs())
        {
          memcpy(cur, head, sizeof(head));
          flow += dfs(S, INF);
        }
      return flow;
    }
    
    int d[maxn << 1], tot = 0;
    In void build(int lim)
    {
      Mem(head, -1); ecnt = -1; Mem(d, 0); tot = 0;
      for(int i = 1; i <= n; ++i)
        {
          int tp = max(sumn[i] - lim, 0);
          d[s] += tp, d[i] -= tp;
          addEdge(s, i, sumn[i] + lim - tp);
        }
      for(int i = 1; i <= m; ++i)
        {
          int tp = max(summ[i] - lim, 0);
          d[t] -= tp, d[i + n] += tp;
          addEdge(i + n, t, summ[i] + lim - tp);
        }
      for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
          {
    	d[i] += l, d[j + n] -= l;
    	addEdge(i, j + n, r - l);
          }
      for(int i = 0; i <= t; ++i)
        if(d[i] >= 0) addEdge(i, T, d[i]), tot += d[i];
        else addEdge(S, i, -d[i]);
      addEdge(t, s, INF);
    }
    
    In bool judge(int x)
    {
      build(x);
      return maxflow() == tot;
    }
    
    int main()
    {
      Mem(head, -1);
      n = read(), m = read(); s = 0, t = n + m + 1;
      S = t + 1, T = t + 2;
      for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j) a[i][j] = read();
      for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j) sumn[i] = sumn[i] + a[i][j];
      for(int j = 1; j <= m; ++j)
        for(int i = 1; i <= n; ++i) summ[j] = summ[j] + a[i][j];
      l = read(), r = read();
      int L = 0, R = 1e8;
      while(L < R)
        {
          int mid = (L + R) >> 1;
          if(judge(mid)) R = mid;
          else L = mid + 1;
        }
      write(L), enter;
      return 0;
    }
    
  • 相关阅读:
    ## js 性能 (未完。。。)
    React 创建元素的几种方式
    Json 与 javascript 对象的区别
    js 基本数据类型
    第十三章 事件
    第十二章 DOM2和DOM3
    第十一章 DOM扩展
    第十章 DOM
    第八章 BOM
    第七章 函数表达式
  • 原文地址:https://www.cnblogs.com/mrclr/p/10816846.html
Copyright © 2020-2023  润新知