嘟嘟嘟
先二分。
令二分的值为(mid),则对于每一行都要满足(|sum_{i = 1} ^ {n} (A_{ij} - B_{ij})|),把绝对值去掉,就得到了((sum_{i = 1} ^ {n} A_{ij}) - mid leqslant sum_{i = 1} ^ {n} B_{ij} leqslant (sum_{i = 1} ^ {n} A_{ij}) + mid)。(列同理)
这就很明显了,因为是网格图,所以每一行每一列看成一个点建立二分图,从源点向每一行连容量为([(sum_{i = 1} ^ {n} A_{ij}) - mid, (sum_{i = 1} ^ {n} A_{ij}) + mid])的边,然后每一列向汇点也这么连边。同时每一行向每一列连容量为([L,R])的边。
然后跑上下界网络流。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 205;
const int maxe = 1e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, l, r, s, t, S, T;
int a[maxn][maxn], sumn[maxn], summ[maxn];
struct Edge
{
int nxt, to, cap, flow;
}e[maxe];
int head[maxn << 1], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w, 0};
head[x] = ecnt;
e[++ecnt] = (Edge){head[y], x, 0, 0};
head[y] = ecnt;
}
int dis[maxn << 1];
In bool bfs()
{
Mem(dis, 0); dis[S] = 1;
queue<int> q; q.push(S);
while(!q.empty())
{
int now = q.front(); q.pop();
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if(!dis[v = e[i].to] && e[i].cap > e[i].flow)
dis[v] = dis[now] + 1, q.push(v);
}
}
return dis[T];
}
int cur[maxn << 1];
In int dfs(int now, int res)
{
if(now == T || res == 0) return res;
int flow = 0, f;
for(int& i = cur[now], v; ~i; i = e[i].nxt)
{
if(dis[v = e[i].to] == dis[now] + 1 && (f = dfs(v, min(res, e[i].cap - e[i].flow))) > 0)
{
e[i].flow += f; e[i ^ 1].flow -= f;
flow += f; res -= f;
if(res == 0) break;
}
}
return flow;
}
In int maxflow()
{
int flow = 0;
while(bfs())
{
memcpy(cur, head, sizeof(head));
flow += dfs(S, INF);
}
return flow;
}
int d[maxn << 1], tot = 0;
In void build(int lim)
{
Mem(head, -1); ecnt = -1; Mem(d, 0); tot = 0;
for(int i = 1; i <= n; ++i)
{
int tp = max(sumn[i] - lim, 0);
d[s] += tp, d[i] -= tp;
addEdge(s, i, sumn[i] + lim - tp);
}
for(int i = 1; i <= m; ++i)
{
int tp = max(summ[i] - lim, 0);
d[t] -= tp, d[i + n] += tp;
addEdge(i + n, t, summ[i] + lim - tp);
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{
d[i] += l, d[j + n] -= l;
addEdge(i, j + n, r - l);
}
for(int i = 0; i <= t; ++i)
if(d[i] >= 0) addEdge(i, T, d[i]), tot += d[i];
else addEdge(S, i, -d[i]);
addEdge(t, s, INF);
}
In bool judge(int x)
{
build(x);
return maxflow() == tot;
}
int main()
{
Mem(head, -1);
n = read(), m = read(); s = 0, t = n + m + 1;
S = t + 1, T = t + 2;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) a[i][j] = read();
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) sumn[i] = sumn[i] + a[i][j];
for(int j = 1; j <= m; ++j)
for(int i = 1; i <= n; ++i) summ[j] = summ[j] + a[i][j];
l = read(), r = read();
int L = 0, R = 1e8;
while(L < R)
{
int mid = (L + R) >> 1;
if(judge(mid)) R = mid;
else L = mid + 1;
}
write(L), enter;
return 0;
}