• [HNOI2011]XOR和路径


    嘟嘟嘟


    一看到异或,就想到按位处理.
    当处理到第(i)位的时候,(f[u])表示节点(u)(n)的路径,这一位为(1)的期望,那么为(0)就是(1 - f[u]),于是有

    [f[u] = frac{1}{d[u]} (sum _ {v in V, w = 0} f[v] + sum _ {v in V, w = 1} 1 - f[v]) ]

    因为是异或,所以如果边权这一位是0的话,应该加上(f[v]);否则加上(1 - f[v])
    然后整理一下

    [d[u] * f[u] - sum _ {v in V, w = 0} f[v] + sum _ {v in V, w = 1} f[v] = sum _ {v in V, w = 1} 1 ]

    于是就可以高斯消元了。
    答案为(sum 2 ^ i * ans_i[1])


    需要注意的是,重边只应该加一次,对应的度数也应该只加(1)

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define rg register
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 105;
    const int maxe = 2e4 + 5;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, m, Max = 0;
    int du[maxn];
    struct Edge
    {
      int nxt, to, w;
    }e[maxe];
    int head[maxn], ecnt = -1;
    void addEdge(int x, int y, int w)
    {
      e[++ecnt] = (Edge){head[x], y, w};
      head[x] = ecnt;
    }
    
    db f[maxn][maxn], ans[maxn], Ans = 0;
    void build(int x)
    {
      Mem(f, 0);
      for(int i = 1; i < n; ++i)  //小于n
        {
          f[i][i] = du[i];
          for(int j = head[i]; j != -1; j = e[j].nxt)
    	if((e[j].w >> x) & 1) ++f[i][e[j].to], ++f[i][n + 1];
    	else --f[i][e[j].to];
        }
    }
    db Gauss()
    {
      for(int i = 1; i <= n; ++i)
        {
          int pos = i;
          for(int j = i + 1; j <= n; ++j)
    	if(fabs(f[j][i]) > fabs(f[pos][i])) pos = j;
          if(pos != i) swap(f[i], f[pos]);
          db tp = f[i][i];
          if(fabs(tp) > eps) for(int j = i; j <= n + 1; ++j) f[i][j] /= tp;
          for(int j = i + 1; j <= n; ++j)
    	{
    	  db tp = f[j][i];
    	  for(int k = i; k <= n + 1; ++k) f[j][k] -= tp * f[i][k];
    	}
        }
      for(int i = n; i; --i)
        {
          ans[i] = f[i][n + 1];
          for(int j = i - 1; j; --j) f[j][n + 1] -= f[j][i] * f[i][n + 1];
        }
      return ans[1];
    }
    
    int main()
    {
      Mem(head, -1);
      n = read(); m = read();
      for(int i = 1; i <= m; ++i)
        {
          int x = read(), y = read(), w = read();
          addEdge(x, y, w); ++du[x];
          if(x ^ y) addEdge(y, x, w), ++du[y];
          Max = max(Max, w);
        }
      for(int i = 0; (1 << i) <= Max; ++i)
        build(i), Ans += Gauss() * (1 << i);
      printf("%.3lf
    ", Ans);
      return 0;
    }
    
  • 相关阅读:
    Spark算子(二)Action
    Spark中利用Scala进行数据清洗(代码)
    Spark核心概念
    Scala面向对象详解
    Scala控制语句
    Scala基础语法
    Scala简介、安装、函数、面向对象
    Hbase优化
    管理员必备的20个Linux系统监控工具
    iOS 关于webView的使用方法
  • 原文地址:https://www.cnblogs.com/mrclr/p/10137454.html
Copyright © 2020-2023  润新知