• luogu P2365 任务安排


    嘟嘟嘟


    如果常规dp,(dp[i][j])表示前(i)个任务分(j)组,得到

    [dp[i][j] = min _ {k = 0} ^ {i - 1} (dp[k][j - 1] + (s * j + sumt[i]) * (sumc[i] - sumc[k])) ]

    复杂度是(O(n ^ 3))的。
    因此我们要换一个思路。
    在执行一批任务时,我们虽然不知道之前机器启动过多少次,但是可以确定机器因执行这批人武而花费的启动时间为(s),会累加到后面的任务上。
    因此,令(dp[i])表示把前(i)个任务分成若干批的最小费用,则

    [dp[i] = min_{j = 0} ^ {i - 1} (dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j])) ]

    (sumt[i] * (sumc[i] - sumc[j]))表示的是不考虑机器启动时前(i)批任务的费用。之所以可以这么写,是因为后面的(s * (sumc[n] - sumc[j]))已经把他们的时间算进去了,即包含在了(dp[j])中。
    时间复杂度(O(n ^ 2))

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define rg register
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 5e3 + 5;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, s;
    int sumt[maxn], sumc[maxn];
    int dp[maxn];
    
    int main()
    {
      n = read(); s = read();
      for(int i = 1, t, c; i <= n; ++i)
        {
          t = read(), sumt[i] = sumt[i - 1] + t;
          c = read(), sumc[i] = sumc[i - 1] + c;
        }
      Mem(dp, 0x3f); dp[0] = 0;
      for(int i = 1; i <= n; ++i)
        for(int j = 0; j < i; ++j)
          dp[i] = min(dp[i], dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j]));
      write(dp[n]), enter;
      return 0;
    }
    

    上述算法已经能过此题,但还有一个$O(n)$的做——斜率优化。 简单来说就是对上述dp式进行变形,把常数、仅与$i$有关的项、仅与$j$有关的项以及$i, j$的乘积项分开。 具体维护下凸壳等想法不想讲了(懒),以后填坑吧 先上代码 ```c++ #include #include #include #include #include #include #include #include #include #include using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define rg register typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 1e4 + 5; inline ll read() { ll ans = 0; char ch = getchar(), last = ' '; while(!isdigit(ch)) last = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(last == '-') ans = -ans; return ans; } inline void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); }

    int n, s;
    ll sumt[maxn], sumc[maxn];
    ll dp[maxn];
    int q[maxn], l = 1, r = 1;

    int main()
    {
    n = read(); s = read();
    for(int i = 1, t, c; i <= n; ++i)
    {
    t = read(), sumt[i] = sumt[i - 1] + t;
    c = read(), sumc[i] = sumc[i - 1] + c;
    }
    Mem(dp, 0x3f); dp[0] = 0;
    for(int i = 1; i <= n; ++i)
    {
    while(l < r && (dp[q[l + 1]] - dp[q[l]]) <= (s + sumt[i]) * (sumc[q[l + 1]] - sumc[q[l]])) l++;
    dp[i] = dp[q[l]] - (s + sumt[i]) * sumc[q[l]] + sumt[i] * sumc[i] + s * sumc[n];
    while(l < r && (dp[q[r]] - dp[q[r - 1]]) * (sumc[i] - sumc[q[r]]) >= (dp[i] - dp[q[r]]) * (sumc[q[r]] - sumc[q[r - 1]])) r--;
    q[++r] = i;
    }
    write(dp[n]), enter;
    return 0;
    }

  • 相关阅读:
    工程模式--基于Java多态性实现
    使用IDEA导入打开Web项目
    基于字典树实现的O(n)排序
    牛客挑战赛39 E 牛牛与序列题解
    牛客练习赛61 F苹果树题解
    Treepath 题解
    Running Median 题解
    Xorto 题解
    NC201400 树学题解
    [Accumulation Degree]题解
  • 原文地址:https://www.cnblogs.com/mrclr/p/10125687.html
Copyright © 2020-2023  润新知