• 【复习笔记】最优化方法


    第二章 线性规划

    本文是本人研究生课程《最优化方法》的复习笔记,主要是总结课件和相关博客的主要内容用作复习。

    2.1 线性规划的标准型

    线性规划问题的解:

    2.2 线性规划的基本概念

    1. (LP)是一个凸规划

    2. 基矩阵

    3. 由“基矩阵”发展而来的其他概念

    4. 基解

    可行解是指满足条件,基本解是指基矩阵对应的解,两者同时满足为基本可行解

    2.3 线性规划解的几何特征与规范式

    定理 1:基可行解对应的A的列向量线性无关

    定理 2:可行解是基可行解 <=>x是可行域的极点

    定理 3:LP有可行解则必有基可行解

    定理 4:LP如果有最优解,则必有某个基可行解是最优解

    判别数的定义:

    2.4 单纯形法的最优性判断

    1. 定理1:判断(x^0)是LP的一个最优解

    2. 定理2:判断LP无最优解

    3. 基可行解的转换(入基,出基)

    4. 在3中转换后得到的新的目标函数值是下降的

    2.5 【必考】单纯形法求解线性规划

    做题

    2.6 初始基可行解求法:大M法

    1. 构造辅助问题(LP')

    2. (LP')(LP)的关系(最优解,无可行解,无最优解)

    2.7 初始基可行解求法:二阶段法

    1. 第一阶段:求(LP''),然后判断原(LP)问题是否存在可行解

    2. 第二阶段:根据第一阶段得到的基可行解,用单纯型法求(LP)

    2.8 【重点】线性规划的对偶理论

    1. 对偶规划概念与变形方法

    2. 对偶规划的性质

    对合性

    自由变量与等式约束的对等关系

    3. 对偶理论

    4. 最优性条件

  • 相关阅读:
    CSS边框(圆角、阴影、背景图片)
    CSS3浏览器兼容
    HTML5全局属性
    HTLM5新增属性
    HTML5标签
    如何开始使用bootstrap
    重新了解Java基础(三)-运行机制&HelloWorld
    重新了解Java基础(二)-Java的特性
    Java关键字之native
    重新了解Java基础(一)
  • 原文地址:https://www.cnblogs.com/molinchn/p/13641426.html
Copyright © 2020-2023  润新知