在使用Bulkload向HBase导入数据中, 自己编写Map与使用KeyValueSortReducer生成HFile时, 出现了以下的异常:
java.io.IOException: Non-increasing Bloom keys: 201301025200000000000003520000000000000500 after 201311195100000000000000010000000000001600
at org.apache.hadoop.hbase.regionserver.StoreFile$Writer.appendGeneralBloomfilter(StoreFile.java:869)at org.apache.hadoop.hbase.regionserver.StoreFile$Writer.append(StoreFile.java:905)
at org.apache.hadoop.hbase.mapreduce.HFileOutputFormat$1.write(HFileOutputFormat.java:180)
at org.apache.hadoop.hbase.mapreduce.HFileOutputFormat$1.write(HFileOutputFormat.java:136)
at org.apache.hadoop.mapred.ReduceTask$NewTrackingRecordWriter.write(ReduceTask.java:586)
at org.apache.hadoop.mapreduce.TaskInputOutputContext.write(TaskInputOutputContext.java:80)
at org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer.reduce(KeyValueSortReducer.java:53)
at org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer.reduce(KeyValueSortReducer.java:36)
at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:177)
at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:649)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:418)
at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)
at org.apache.hadoop.mapred.Child.main(Child.java:249)
该异常在源代码的StoreFile类中, 即在使用StoreFile类生成HFile文件时抛出异常, 依据控制台异常信息能够知道异常出如今源代码StoreFile.java:905行处,此处是append方法,该方法调用appendGeneralBloomfilter方法,生成Bloom key, 源代码为:
public static class HFileGenerateMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> { private static int familyIndex = 0; private static Configuration conf = null; private static MyMD5 md5 = new MyMD5(); @Override protected void setup(Context context) throws IOException, InterruptedException { conf = context.getConfiguration(); familyIndex = conf.getInt("familyIndex",0); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { ImmutableBytesWritable mykey = new ImmutableBytesWritable( value.toString().split(",")[0].getBytes()); List<KeyValue> list = null; list = createKeyValue(value.toString()); Iterator<KeyValue> it = list.iterator(); while (it.hasNext()) { KeyValue kv = new KeyValue(); kv = it.next(); if (kv != null) { context.write(mykey, kv); } } } /** * a.CITY_NO,to_char(DT,'yyyy-MM-dd'),DATA_TYPE,E0,E1,E2,E3,E4,E5, * MEASUREPOINTID,TRANSFORMERID,ZONEID,CAPACITY * @param str * @return */ private List<KeyValue> createKeyValue(String str) { List<KeyValue> list = new ArrayList<KeyValue>(CONSTANT_HBASE.TB2_FNColNames[familyIndex].length); String[] values = str.toString().split(","); String[] qualifiersName = CONSTANT_HBASE.TB2_FNColNames[familyIndex]; for (int i = 0; i < qualifiersName.length; i++) { //须要作为rowKey的各个字段字符串组成RowKey String rowkey = values[1]+values[0]+values[11]+values[12]; //加上32位的MD5 rowkey += md5.getMD5Code(rowkey); String family = CONSTANT_HBASE.TB2_FamilyNames[familyIndex]; String qualifier = qualifiersName[i]; String value_str = values[i+CONSTANT_HBASE.TB2_FNColIndex[familyIndex]-1]; KeyValue kv = new KeyValue(Bytes.toBytes(rowkey), Bytes.toBytes(family), Bytes.toBytes(qualifier), CONSTANT_HBASE.timeStamp, Bytes.toBytes(value_str)); list.add(kv); } return list; } }
关键出错的那一句在
ImmutableBytesWritable rowkey = new ImmutableBytesWritable(value.toString().split(",")[0].getBytes());由于终于导入RowKey的是由多个字段的字符串+32位的MD5值拼接而成的,可是生成ImmutableBytesWritable mykey却仅仅用到第一个字段的字符串,而这个key是用来全局排序用的,所以须要mykey与KeyValue kv 的rowkey相等, 于是更改方法便是将map方法代码改成例如以下:
@Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { List<KeyValue> list = null; list = createKeyValue(value.toString()); Iterator<KeyValue> it = list.iterator(); while (it.hasNext()) { KeyValue kv = new KeyValue(); kv = it.next(); if (kv != null) { <span style="color:#FF0000;">context.write(new ImmutableBytesWritable(kv.getKey()), kv);</span> } } }
执行之后成功了,能够通过http://localhost:50030/jobtracker.jsp查看任务执行状态.