• 关于multiprocessing,我也来聊几句


    起因:近期须要从hbase中向 ES中导一批数据。使用multiprocessing 启动多个程序同一时候向ES导数据。能够大大提高效率。由于导数的任务是能够依照时间切割的。

    一段简单的代码例如以下:

    from multiprocessing import Pool
    
    def f(x):
        return x*x
    
    if __name__ == '__main__':
        pool = Pool(processes=4)              # start 4 worker processes
    
        result = pool.apply_async(f, (10,))    # evaluate "f(10)" asynchronously
        print result.get(timeout=1)           # prints "100" unless your computer is *very* slow
    
        print pool.map(f, range(10))


    令我十分不解的,multiprocessing 是怎样实现任务的分发,以及结果的回传的。

    我希望可以把它的实现机制与操作系统的进程机制相应起来。

    经过阅读代码。得出的结论例如以下:

    1. 父进程作为整个任务的分发器,每一个worker是一个子进程

    2. 子进程和父进程之间通过管道通讯。包含任务的分发和结果的回传(2个【管道】) ,管道通过【信号量】加锁


    以下罗列部分核心代码,增加我自己的凝视,方便大家阅读代码时參考:

    1. 管道的创建

        def _setup_queues(self):
            from .queues import SimpleQueue
            self._inqueue = SimpleQueue()       # 管道1 用于分发任务
            self._outqueue = SimpleQueue()      # 管道2 用于推送结果
            self._quick_put = self._inqueue._writer.send
            self._quick_get = self._outqueue._reader.recv

    再查看 SimpleQueue

    class SimpleQueue(object):
    
        def __init__(self):
            self._reader, self._writer = Pipe(duplex=False)
            self._rlock = Lock()
            if sys.platform == 'win32':
                self._wlock = None
            else:
                self._wlock = Lock()
            self._make_methods()
    

    在查看 Pipe

    def Pipe(duplex=True):
        '''
        Returns two connection object connected by a pipe
        '''
        from multiprocessing.connection import Pipe
        return Pipe(duplex)
    if sys.platform != 'win32':
    
        def Pipe(duplex=True):  # duplex 是否是全双工
            '''
            Returns pair of connection objects at either end of a pipe
            '''
            if duplex:
                s1, s2 = socket.socketpair()
                s1.setblocking(True)
                s2.setblocking(True)
                c1 = _multiprocessing.Connection(os.dup(s1.fileno()))
                c2 = _multiprocessing.Connection(os.dup(s2.fileno()))
                s1.close()
                s2.close()
            else:
                fd1, fd2 = os.pipe()
                c1 = _multiprocessing.Connection(fd1, writable=False)
                c2 = _multiprocessing.Connection(fd2, readable=False)
    
            return c1, c2

    很常使用意思的是。假设是全双工的话。直接用socket 来实现

    SimpleQueue 是加过锁的,能够用于多进程间并发读写,来看看锁的实现

    class Lock(SemLock):  # 到这里python 代码已经无法再跳入。SemLock 引自 _multiprocessing.so 
    
        def __init__(self):
            SemLock.__init__(self, SEMAPHORE, 1, 1

    由SemLock 能够判断,锁就是通过信号量实现的。

    2. worker的创建

        def _repopulate_pool(self):
            """Bring the number of pool processes up to the specified number,
            for use after reaping workers which have exited.
            """
            for i in range(self._processes - len(self._pool)):
                w = self.Process(target=worker,
                                 args=(self._inqueue, self._outqueue,           # 管道作为參数被传入
                                       self._initializer,
                                       self._initargs, self._maxtasksperchild)
                                )
                self._pool.append(w)
                w.name = w.name.replace('Process', 'PoolWorker')
                w.daemon = True
                w.start()
                debug('added worker')
    def worker(inqueue, outqueue, initializer=None, initargs=(), maxtasks=None):
        assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0)
        put = outqueue.put      # ***留意这里***
        get = inqueue.get       # ***留意这里***
    
    # 省略部分代码
        completed = 0
        while maxtasks is None or (maxtasks and completed < maxtasks):
            try:
                task = get()   # ***留意这里***  任务是子进程自己从【管道】中取回的,这里的管道相当于消息队列了
            except (EOFError, IOError):
                debug('worker got EOFError or IOError -- exiting')
                break
    
            if task is None:  # 假设任务是None worker就退出了
                debug('worker got sentinel -- exiting')
                break
    
            job, i, func, args, kwds = task
            try:
                result = (True, func(*args, **kwds))
            except Exception, e:
                result = (False, e)
            try:
                put((job, i, result))    # ***留意这里*** 结果推回队列
            except Exception as e:
                wrapped = MaybeEncodingError(e, result[1])
                debug("Possible encoding error while sending result: %s" % (
                    wrapped))
                put((job, i, (False, wrapped)))
            completed += 1
        debug('worker exiting after %d tasks' % completed


    明确了这些对于multiprocessing 的使用,我明显就有了底气





  • 相关阅读:
    ANC耳机中的数字反馈稳定性控制(Active Noise Cancellation in Headphones by Digital Robust Feedback Control)
    【控制理论】水床效应(waterbed effect)与Bode灵敏度积分
    ANC的基本概念 主通路和次级通路
    ANC耳机中通透模式设计方案
    matlab编程规则总结
    滤波器系数、单位脉冲响应、频率响应等概念笔记
    shell 脚本艺术
    vue leader-line-vue
    vue npm rum命令
    VUEX
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/6943837.html
Copyright © 2020-2023  润新知