• logstash收集慢查询日志配置


    此配置参考了来自http://www.wklken.me/posts/2016/05/24/elk-mysql-slolog.html 做了修改

    ELK架构采用 logstash-kafka-logstash-elasticsearch-kibana

    第一层logstash只做收集功能,第二层logstash做filter功能


    客户端logstash配置:

    input {
    
    
      file {
        path => ["/tmp/mysql_slow.log"]
        type => "ops_mysql_slow_log"
        #start_position=>"beginning"
        add_field => ["env", "PRODUCT"]
       #超过5秒自动上传,避免没有触发multline功能
        codec => multiline {
          pattern => "^# User@Host:"
          negate => true
          what => previous
          max_bytes => "100kib"
          auto_flush_interval => 5
        }
      }
     
    }
    
    
    
    output {
    #  stdout {}
        if [type] == "ops_mysql_slow_log" {
             kafka{
            topic_id => "mysql_slow_all_log"
            bootstrap_servers => "kafka1:9092" # kafka的地址
            compression_type => "gzip"
        }
        }
       
    }

    服务端配置

    input {
          kafka {
            group_id => "logstash"
            topic_id => "mysql_slow_all_log"
            consumer_threads => 15
            #decorate_events => true
            zk_connect => "kafk1:2181" # zookeeper的地址
       }  
    }
    
    
    
    filter {
      if ("multiline_codec_max_bytes_reached" in [tags]) {
          drop {}
      }
      if [type] =~ ".*_mysql_slow_log"{
       grok {
        # User@Host: logstash[logstash] @ localhost [127.0.0.1]
        # User@Host: logstash[logstash] @  [127.0.0.1]
        # User@Host: logstash[logstash] @ localhost []
        match => [ "message", "^# User@Host: (?<user>[^[]+)[[^]]+] @ (?<dbhost>[^s]+)? [%{IP:ip}?]" ]
      }
     grok {
        # Query_time: 2.985827  Lock_time: 0.000053 Rows_sent: 0  Rows_examined: 0
        match => [ "message", "^# Query_time: %{NUMBER:duration:float}%{SPACE}Lock_time: %{NUMBER:lock_wait:float}%{SPACE}Rows_sent: %{NUMBER:results:int}%{SPACE}Rows_examined:%{SPACE}%{NUMBER:scanned:int}s+(?<sql>[sS]*)"]
      }
    
      # Capture the time the query happened
      grok {
        match => [ "message", "^SET timestamp=%{NUMBER:dbtimestamp};" ]
      }
    # if codec multiline parse failure
    #出现# Time: 170807 14:48:27 类似的数据 进行清理
      if ("_grokparsefailure" in [tags]) {
          drop {}
      }
      date {
        match => [ "dbtimestamp", "UNIX" ]
      }
    
      mutate {
        gsub => [
            "sql", "
    SET timestamp=d+?;
    ", "",
            "sql", "
    use [a-zA-Z0-9-\_]+?;", "",
            "sql", "
    # Time: d+s+d+:d+:d+", "",
            "sql", "
    /usr/local/mysql/bin/mysqld.+$", "",
            "sql", "
    Tcp port:.+$", "",
            "sql", "
    Time .+$", ""
        ]
      }
    
    
    
      # calculate unique hash
      mutate {
        add_field => {"sql_for_hash" => "%{sql}"}
      }
      mutate {
        gsub => [
            "sql_for_hash", "'.+?'", "",
            "sql_for_hash", "-?d*.{0,1}d+", ""
        ]
      }
      checksum {
        algorithm => "md5"
        keys => ["sql_for_hash"]
      }
    
      # Drop the captured timestamp field since it has been moved to the time of the event
      mutate {
     #    TODO: remove the message field
      #  remove_field => ["timestamp", "message", "sql_for_hash"]
        remove_field => ["dbtimestamp", "sql_for_hash"]
      }
      }
     
    }
    
    output {
        if [type] =~ ".*_mysql_slow_log"   {
        elasticsearch {
            hosts => ["localhost:9200"]
            codec => "json"
            workers => 20
            index => "logstash-mysql-slow-log-%{+YYYY.MM.dd}"
                            }
           }
    }
  • 相关阅读:
    Leetcode 3:无重复字符的最长子串
    激光三角测量法在工业视觉检测上的应用
    通俗易懂的Harris 角点检测
    杂乱场景中的尺度层次三维目标识别
    多视图几何三维重建实战系列之R-MVSNet
    一文详解工业相机和镜头选取
    LOAM论文介绍与A-LOAM代码简介
    基于双目事件相机的视觉里程计
    在医学图像分析中使用ICP算法进行点云配准
    两种ICP的改进算法:PLICP与NICP
  • 原文地址:https://www.cnblogs.com/mcshell/p/7299179.html
Copyright © 2020-2023  润新知