• 0980. Unique Paths III (H)


    Unique Paths III (H)

    题目

    On a 2-dimensional grid, there are 4 types of squares:

    • 1 represents the starting square. There is exactly one starting square.
    • 2 represents the ending square. There is exactly one ending square.
    • 0 represents empty squares we can walk over.
    • -1 represents obstacles that we cannot walk over.

    Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

    Example 1:

    Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
    Output: 2
    Explanation: We have the following two paths: 
    1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
    2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
    

    Example 2:

    Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
    Output: 4
    Explanation: We have the following four paths: 
    1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
    2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
    3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
    4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
    

    Example 3:

    Input: [[0,1],[2,0]]
    Output: 0
    Explanation: 
    There is no path that walks over every empty square exactly once.
    Note that the starting and ending square can be anywhere in the grid.
    

    Note:

    1. 1 <= grid.length * grid[0].length <= 20

    题意

    给定一个二维数组,1表示起点,2表示终点,0表示可通行,-1表示不可通行。找到一条从起点到终点的路径,使其能通过所有可通行的点,统计这样的路径的个数。

    思路

    直接暴力回溯就能AC。


    代码实现

    Java

    class Solution {
        private int count;
        private int m, n;
        private int[] iPlus = { -1, 0, 1, 0 };
        private int[] jPlus = { 0, 1, 0, -1 };
    
        public int uniquePathsIII(int[][] grid) {
            m = grid.length;
            n = grid[0].length;
            int x = 0, y = 0;
            int left = 0;
    
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    if (grid[i][j] >= 0) {
                        left++;
                    }
    
                    if (grid[i][j] == 1) {
                        x = i;
                        y = j;
                    }
                }
            }
    
            dfs(grid, x, y, left, new boolean[m][n]);
            return count;
        }
    
        private void dfs(int[][] grid, int i, int j, int left, boolean visited[][]) {
            if (grid[i][j] == 2 && left == 1) {
                count++;
                return;
            }
    
            visited[i][j] = true;
            for (int x = 0; x < 4; x++) {
                int nextI = i + iPlus[x];
                int nextJ = j + jPlus[x];
                if (isValid(grid, nextI, nextJ) && !visited[nextI][nextJ]) {
                    dfs(grid, nextI, nextJ, left - 1, visited);
                }
            }
    
            visited[i][j] = false;
        }
    
        private boolean isValid(int[][] grid, int i, int j) {
            return i >= 0 && i < m && j >= 0 && j < n && grid[i][j] != -1;
        }
    }
    
  • 相关阅读:
    PAT 甲级1135. Is It A Red-Black Tree (30)
    AVL树模板
    定时器模板
    Listview模板
    Hash二次探测
    BFS小结
    STL之set篇
    完全二叉树-已知中序排序,输出广度排序
    BZOJ2037: [Sdoi2008]Sue的小球
    poj1157LITTLE SHOP OF FLOWERS
  • 原文地址:https://www.cnblogs.com/mapoos/p/13702509.html
Copyright © 2020-2023  润新知