Robot Bounded In Circle (M)
题目
On an infinite plane, a robot initially stands at (0, 0)
and faces north. The robot can receive one of three instructions:
"G"
: go straight 1 unit;"L"
: turn 90 degrees to the left;"R"
: turn 90 degress to the right.
The robot performs the instructions
given in order, and repeats them forever.
Return true
if and only if there exists a circle in the plane such that the robot never leaves the circle.
Example 1:
Input: "GGLLGG"
Output: true
Explanation:
The robot moves from (0,0) to (0,2), turns 180 degrees, and then returns to (0,0).
When repeating these instructions, the robot remains in the circle of radius 2 centered at the origin.
Example 2:
Input: "GG"
Output: false
Explanation:
The robot moves north indefinitely.
Example 3:
Input: "GL"
Output: true
Explanation:
The robot moves from (0, 0) -> (0, 1) -> (-1, 1) -> (-1, 0) -> (0, 0) -> ...
Note:
1 <= instructions.length <= 100
instructions[i]
is in{'G', 'L', 'R'}
题意
给定一连串机器人行动的指令,判断机器人是否能保持在一个圆圈范围内活动。
思路
要让机器人保持在圆圈范围内活动,就要保持机器人会周期性的通过原点。当一个周期的指令执行完毕后,机器人会发生一个坐标的变化和一个指向方向的变化:如果结束方向指向北方,那么只有当结束位置也在原点时才能满足条件;如果结束方向指向南方,那么经过两个周期的指令一定能回到原点;如果结束方向指向西方或者东方,那么经过四个周期的指令一定能回到原点。因此只要对结束方向为北方这一种情况进行判断。
代码实现
Java
class Solution {
public boolean isRobotBounded(String instructions) {
int diffX = 0, diffY = 0;
int dir = 0;
for (char c : instructions.toCharArray()) {
if (c == 'G') {
diffX += dir == 1 ? -1 : dir == 3 ? 1 : 0;
diffY += dir == 0 ? 1 : dir == 2 ? -1 : 0;
} else if (c == 'L') {
dir = (dir + 3) % 4;
} else {
dir = (dir + 1) % 4;
}
}
return dir == 0 ? diffX == 0 && diffY == 0 : true;
}
}