redis是用c语言的写的缓存服务器,有高性能和多种数据类型支持的特性,广受互联网公司喜爱。
我们要分析其启动过程,首先就要先找到其入口。
当然我们应该是要先分析 Makefile 文件,然后找到最终编译成的文件,然后再顺势找到C语言入口 main(); 这里咱们就不费那事了,一是这事很枯燥,二是我也不知道找不找到得到。所以,就直接找到入口吧: 在 src/server.c 中,main() 函数就是了。
引用网上大牛的话归纳一下,main 函数执行的过程分以下几步:
1. Redis 会设置一些回调函数,当前时间,随机数的种子。回调函数实际上什么?举个例子,比如 Q/3 要给 Redis 发送一个关闭的命令,让它去做一些优雅的关闭,做一些扫尾清楚的工作,这个工作如果不设计回调函数,它其实什么都不会干。其实 C 语言的程序跑在操作系统之上,Linux 操作系统本身就是提供给我们事件机制的回调注册功能,所以它会设计这个回调函数,让你注册上,关闭的时候优雅的关闭,然后它在后面可以做一些业务逻辑。
2. 不管任何软件,肯定有一份配置文件需要配置。首先在服务器端会把它默认的一份配置做一个初始化。
3. Redis 在 3.0 版本正式发布之前其实已经有筛选这个模式了,但是这个模式,我很少在生产环境在用。Redis 可以初始化这个模式,比较复杂。
4. 解析启动的参数。其实不管什么软件,它在初始化的过程当中,配置都是由两部分组成的。第一部分,静态的配置文件;第二部分,动态启动的时候,main,就是参数给它的时候进去配置。
5. 把服务端的东西拿过来,装载 Config 配置文件,loadServerConfig。
6. 初始化服务器,initServer。
7. 从磁盘装载数据。
8. 有一个主循环程序开始干活,用来处理客户端的请求,并且把这个请求转到后端的业务逻辑,帮你完成命令执行,然后吐数据,这么一个过程。
我们以源码浏览形式,来看看具体实现。
main 函数入口:
注意 server 是一个全局变量,各函数进行操作时,都直接对其操作。
// struct redisServer server; // src/server.c int main(int argc, char **argv) { struct timeval tv; int j; // 测试环境变量设置 #ifdef REDIS_TEST if (argc == 3 && !strcasecmp(argv[1], "test")) { if (!strcasecmp(argv[2], "ziplist")) { return (argc, argv); } else if (!strcasecmp(argv[2], "quicklist")) { quicklistTest(argc, argv); } else if (!strcasecmp(argv[2], "intset")) { return intsetTest(argc, argv); } else if (!strcasecmp(argv[2], "zipmap")) { return zipmapTest(argc, argv); } else if (!strcasecmp(argv[2], "sha1test")) { return sha1Test(argc, argv); } else if (!strcasecmp(argv[2], "util")) { return utilTest(argc, argv); } else if (!strcasecmp(argv[2], "sds")) { return sdsTest(argc, argv); } else if (!strcasecmp(argv[2], "endianconv")) { return endianconvTest(argc, argv); } else if (!strcasecmp(argv[2], "crc64")) { return crc64Test(argc, argv); } return -1; /* test not found */ } #endif /* We need to initialize our libraries, and the server configuration. */ #ifdef INIT_SETPROCTITLE_REPLACEMENT spt_init(argc, argv)ziplistTest; #endif // 设置些默认值, 随机数等等 setlocale(LC_COLLATE,""); zmalloc_enable_thread_safeness(); // oom 回调处理 zmalloc_set_oom_handler(redisOutOfMemoryHandler); srand(time(NULL)^getpid()); gettimeofday(&tv,NULL); dictSetHashFunctionSeed(tv.tv_sec^tv.tv_usec^getpid()); server.sentinel_mode = checkForSentinelMode(argc,argv); // 初始化服务器默认配置, 将变化体现到 server 变量上 initServerConfig(); /* Store the executable path and arguments in a safe place in order * to be able to restart the server later. */ server.executable = getAbsolutePath(argv[0]); server.exec_argv = zmalloc(sizeof(char*)*(argc+1)); server.exec_argv[argc] = NULL; for (j = 0; j < argc; j++) server.exec_argv[j] = zstrdup(argv[j]); /* We need to init sentinel right now as parsing the configuration file * in sentinel mode will have the effect of populating the sentinel * data structures with master nodes to monitor. */ if (server.sentinel_mode) { initSentinelConfig(); initSentinel(); } // 加载配置文件及其他命令 /* Check if we need to start in redis-check-rdb mode. We just execute * the program main. However the program is part of the Redis executable * so that we can easily execute an RDB check on loading errors. */ if (strstr(argv[0],"redis-check-rdb") != NULL) exit(redis_check_rdb_main(argv,argc)); if (argc >= 2) { j = 1; /* First option to parse in argv[] */ sds options = sdsempty(); char *configfile = NULL; /* Handle special options --help and --version */ if (strcmp(argv[1], "-v") == 0 || strcmp(argv[1], "--version") == 0) version(); if (strcmp(argv[1], "--help") == 0 || strcmp(argv[1], "-h") == 0) usage(); if (strcmp(argv[1], "--test-memory") == 0) { if (argc == 3) { memtest(atoi(argv[2]),50); exit(0); } else { fprintf(stderr,"Please specify the amount of memory to test in megabytes. "); fprintf(stderr,"Example: ./redis-server --test-memory 4096 "); exit(1); } } /* First argument is the config file name? */ if (argv[j][0] != '-' || argv[j][1] != '-') { configfile = argv[j]; server.configfile = getAbsolutePath(configfile); /* Replace the config file in server.exec_argv with * its absoulte path. */ zfree(server.exec_argv[j]); server.exec_argv[j] = zstrdup(server.configfile); j++; } /* All the other options are parsed and conceptually appended to the * configuration file. For instance --port 6380 will generate the * string "port 6380 " to be parsed after the actual file name * is parsed, if any. */ while(j != argc) { if (argv[j][0] == '-' && argv[j][1] == '-') { /* Option name */ if (!strcmp(argv[j], "--check-rdb")) { /* Argument has no options, need to skip for parsing. */ j++; continue; } if (sdslen(options)) options = sdscat(options," "); options = sdscat(options,argv[j]+2); options = sdscat(options," "); } else { /* Option argument */ options = sdscatrepr(options,argv[j],strlen(argv[j])); options = sdscat(options," "); } j++; } if (server.sentinel_mode && configfile && *configfile == '-') { serverLog(LL_WARNING, "Sentinel config from STDIN not allowed."); serverLog(LL_WARNING, "Sentinel needs config file on disk to save state. Exiting..."); exit(1); } resetServerSaveParams(); loadServerConfig(configfile,options); sdsfree(options); } else { serverLog(LL_WARNING, "Warning: no config file specified, using the default config. In order to specify a config file use %s /path/to/%s.conf", argv[0], server.sentinel_mode ? "sentinel" : "redis"); } server.supervised = redisIsSupervised(server.supervised_mode); int background = server.daemonize && !server.supervised; if (background) daemonize(); // 初始化服务器 // 重点如: 绑定监听端口号,设置 acceptTcpHandler 回调函数 initServer(); if (background || server.pidfile) createPidFile(); redisSetProcTitle(argv[0]); redisAsciiArt(); checkTcpBacklogSettings(); if (!server.sentinel_mode) { /* Things not needed when running in Sentinel mode. */ serverLog(LL_WARNING,"Server started, Redis version " REDIS_VERSION); #ifdef __linux__ linuxMemoryWarnings(); #endif // 从磁盘装载数据进行恢复或者初始化 loadDataFromDisk(); if (server.cluster_enabled) { if (verifyClusterConfigWithData() == C_ERR) { serverLog(LL_WARNING, "You can't have keys in a DB different than DB 0 when in " "Cluster mode. Exiting."); exit(1); } } if (server.ipfd_count > 0) serverLog(LL_NOTICE,"The server is now ready to accept connections on port %d", server.port); if (server.sofd > 0) serverLog(LL_NOTICE,"The server is now ready to accept connections at %s", server.unixsocket); } else { sentinelIsRunning(); } /* Warning the user about suspicious maxmemory setting. */ if (server.maxmemory > 0 && server.maxmemory < 1024*1024) { serverLog(LL_WARNING,"WARNING: You specified a maxmemory value that is less than 1MB (current value is %llu bytes). Are you sure this is what you really want?", server.maxmemory); } // 主循环服务, 只有收到 stop 命令后,才会退出 aeSetBeforeSleepProc(server.el,beforeSleep); aeMain(server.el); // 关闭服务 aeDeleteEventLoop(server.el); return 0; }
如上,即是redis的整个main方法了,整个启动流程也算是一目了然了。大概流程也不出预料,环境设置、默认参数、配置文件加载、初始化服务、恢复数据、死循环。
配置参数什么的都不用瞅了,但是对于哨兵、集群什么的,又太深入了。咱们还是先蜻蜓点水下,主要看年初始化服务器的时候做了些啥事!
初始化服务器:
// src/server.c, 在main中调用 void initServer(void) { int j; // 注册几个事件响应处理器,比如前台模式运行或者调试模式的处理 signal(SIGHUP, SIG_IGN); signal(SIGPIPE, SIG_IGN); setupSignalHandlers(); if (server.syslog_enabled) { openlog(server.syslog_ident, LOG_PID | LOG_NDELAY | LOG_NOWAIT, server.syslog_facility); } // 初始化客户端相关的参数,设置到 server 中 server.pid = getpid(); server.current_client = NULL; server.clients = listCreate(); server.clients_to_close = listCreate(); server.slaves = listCreate(); server.monitors = listCreate(); server.clients_pending_write = listCreate(); server.slaveseldb = -1; /* Force to emit the first SELECT command. */ server.unblocked_clients = listCreate(); server.ready_keys = listCreate(); server.clients_waiting_acks = listCreate(); server.get_ack_from_slaves = 0; server.clients_paused = 0; server.system_memory_size = zmalloc_get_memory_size(); // 全局共享对象, 比如 OK, 1-10000, ... // 性能优化, 避免对相同的对象反复创建 createSharedObjects(); adjustOpenFilesLimit(); // 创建事件循环对象 (aeEventLoop), 在 ae.c 中实现 server.el = aeCreateEventLoop(server.maxclients+CONFIG_FDSET_INCR); // 创建db对象,所有数据存储其中 server.db = zmalloc(sizeof(redisDb)*server.dbnum); /* Open the TCP listening socket for the user commands. */ // 打开服务端口监听 if (server.port != 0 && listenToPort(server.port,server.ipfd,&server.ipfd_count) == C_ERR) exit(1); /* Open the listening Unix domain socket. */ if (server.unixsocket != NULL) { unlink(server.unixsocket); /* don't care if this fails */ server.sofd = anetUnixServer(server.neterr,server.unixsocket, server.unixsocketperm, server.tcp_backlog); if (server.sofd == ANET_ERR) { serverLog(LL_WARNING, "Opening Unix socket: %s", server.neterr); exit(1); } anetNonBlock(NULL,server.sofd); } /* Abort if there are no listening sockets at all. */ if (server.ipfd_count == 0 && server.sofd < 0) { serverLog(LL_WARNING, "Configured to not listen anywhere, exiting."); exit(1); } /* Create the Redis databases, and initialize other internal state. */ // 初始化各db,实际就是由这么几个数组来动作db的 for (j = 0; j < server.dbnum; j++) { server.db[j].dict = dictCreate(&dbDictType,NULL); server.db[j].expires = dictCreate(&keyptrDictType,NULL); server.db[j].blocking_keys = dictCreate(&keylistDictType,NULL); server.db[j].ready_keys = dictCreate(&objectKeyPointerValueDictType,NULL); server.db[j].watched_keys = dictCreate(&keylistDictType,NULL); server.db[j].eviction_pool = evictionPoolAlloc(); server.db[j].id = j; server.db[j].avg_ttl = 0; } // pub/sub 参数初始化 server.pubsub_channels = dictCreate(&keylistDictType,NULL); server.pubsub_patterns = listCreate(); listSetFreeMethod(server.pubsub_patterns,freePubsubPattern); listSetMatchMethod(server.pubsub_patterns,listMatchPubsubPattern); server.cronloops = 0; // rdb,aof 参数初始化 server.rdb_child_pid = -1; server.aof_child_pid = -1; server.rdb_child_type = RDB_CHILD_TYPE_NONE; aofRewriteBufferReset(); server.aof_buf = sdsempty(); server.lastsave = time(NULL); /* At startup we consider the DB saved. */ server.lastbgsave_try = 0; /* At startup we never tried to BGSAVE. */ server.rdb_save_time_last = -1; server.rdb_save_time_start = -1; server.dirty = 0; resetServerStats(); /* A few stats we don't want to reset: server startup time, and peak mem. */ server.stat_starttime = time(NULL); server.stat_peak_memory = 0; server.resident_set_size = 0; server.lastbgsave_status = C_OK; server.aof_last_write_status = C_OK; server.aof_last_write_errno = 0; server.repl_good_slaves_count = 0; updateCachedTime(); /* Create out timers, that's our main way to process background * operations. */ // 创建定时器,用于运行后台事务,每隔1s运行一次 // 由 serverCron 承载任务,执行任务如 指标统计,操作日志持久化,db扩容,客户端管理... if (aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) == AE_ERR) { serverPanic("Can't create event loop timers."); exit(1); } /* Create an event handler for accepting new connections in TCP and Unix * domain sockets. */ // 创建socket文件监控, 由 acceptTcpHandler 承载处理 for (j = 0; j < server.ipfd_count; j++) { if (aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE, acceptTcpHandler,NULL) == AE_ERR) { serverPanic( "Unrecoverable error creating server.ipfd file event."); } } if (server.sofd > 0 && aeCreateFileEvent(server.el,server.sofd,AE_READABLE, acceptUnixHandler,NULL) == AE_ERR) serverPanic("Unrecoverable error creating server.sofd file event."); // 如果开启了AOF功能,就打开AOF文件 /* Open the AOF file if needed. */ if (server.aof_state == AOF_ON) { server.aof_fd = open(server.aof_filename, O_WRONLY|O_APPEND|O_CREAT,0644); if (server.aof_fd == -1) { serverLog(LL_WARNING, "Can't open the append-only file: %s", strerror(errno)); exit(1); } } /* 32 bit instances are limited to 4GB of address space, so if there is * no explicit limit in the user provided configuration we set a limit * at 3 GB using maxmemory with 'noeviction' policy'. This avoids * useless crashes of the Redis instance for out of memory. */ if (server.arch_bits == 32 && server.maxmemory == 0) { serverLog(LL_WARNING,"Warning: 32 bit instance detected but no memory limit set. Setting 3 GB maxmemory limit with 'noeviction' policy now."); server.maxmemory = 3072LL*(1024*1024); /* 3 GB */ server.maxmemory_policy = MAXMEMORY_NO_EVICTION; } if (server.cluster_enabled) clusterInit(); replicationScriptCacheInit(); // lua 脚本初始化 scriptingInit(1); // 初始化慢查询日志变量 slowlogInit(); // 延迟监控初始化,仅创建变量 latencyMonitorInit(); // 初始化几个系统必须的线程(线程池),执行任务,while死循环 bioInit(); }
通过以上,我们可以清楚明白,在初始化服务器时,高大上的C都干了啥。总体来说就是: 设置系统回调、开启端口监听、开启socket监听、开启后台任务、开启AOF、脚本初始化、线程池初始化。。。 (做这些事是容易的,难的是设计之初如何架构其功能)
下面我们来看几个初始服务器时的关键函数方法。
1. aeEventLoop 的创建
aeEventLoop 是后续进行任务处理的重要数据结构。
// ae.c, 创建 aeEventLoop 对象,封装底层的 事件模式,统一对外服务 aeEventLoop *aeCreateEventLoop(int setsize) { aeEventLoop *eventLoop; int i; if ((eventLoop = zmalloc(sizeof(*eventLoop))) == NULL) goto err; eventLoop->events = zmalloc(sizeof(aeFileEvent)*setsize); eventLoop->fired = zmalloc(sizeof(aeFiredEvent)*setsize); if (eventLoop->events == NULL || eventLoop->fired == NULL) goto err; eventLoop->setsize = setsize; eventLoop->lastTime = time(NULL); eventLoop->timeEventHead = NULL; eventLoop->timeEventNextId = 0; eventLoop->stop = 0; eventLoop->maxfd = -1; eventLoop->beforesleep = NULL; // 根据系统不同,选择不同的实现,C里面的多态自然是用 #ifdef 来实现了 if (aeApiCreate(eventLoop) == -1) goto err; /* Events with mask == AE_NONE are not set. So let's initialize the * vector with it. */ for (i = 0; i < setsize; i++) eventLoop->events[i].mask = AE_NONE; return eventLoop; err: if (eventLoop) { zfree(eventLoop->events); zfree(eventLoop->fired); zfree(eventLoop); } return NULL; } // 选择不同的io模型, 优先级: evport > epoll > kqueue > select #ifdef HAVE_EVPORT #include "ae_evport.c" #else #ifdef HAVE_EPOLL #include "ae_epoll.c" #else #ifdef HAVE_KQUEUE #include "ae_kqueue.c" #else #include "ae_select.c" #endif #endif #endif // epoll 实现 static int aeApiCreate(aeEventLoop *eventLoop) { aeApiState *state = zmalloc(sizeof(aeApiState)); if (!state) return -1; state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize); if (!state->events) { zfree(state); return -1; } state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */ if (state->epfd == -1) { zfree(state->events); zfree(state); return -1; } eventLoop->apidata = state; return 0; } // ae_epoll.c, linux 创建epoll句柄 static int aeApiCreate(aeEventLoop *eventLoop) { aeApiState *state = zmalloc(sizeof(aeApiState)); if (!state) return -1; state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize); if (!state->events) { zfree(state); return -1; } state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */ if (state->epfd == -1) { zfree(state->events); zfree(state); return -1; } eventLoop->apidata = state; return 0; }
2. acceptTcpHandler, 对于网络请求的接入处理
// networking.c, acceptTcpHandler void acceptTcpHandler(aeEventLoop *el, int fd, void *privdata, int mask) { int cport, cfd, max = MAX_ACCEPTS_PER_CALL; char cip[NET_IP_STR_LEN]; UNUSED(el); UNUSED(mask); UNUSED(privdata); while(max--) { // 获取fd, ip, port cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport); if (cfd == ANET_ERR) { if (errno != EWOULDBLOCK) serverLog(LL_WARNING, "Accepting client connection: %s", server.neterr); return; } serverLog(LL_VERBOSE,"Accepted %s:%d", cip, cport); // 创建客户端对象,加入到 server.clients 中 acceptCommonHandler(cfd,0,cip); } } // anet.c, 解析 ip, port, fd int anetTcpAccept(char *err, int s, char *ip, size_t ip_len, int *port) { int fd; struct sockaddr_storage sa; socklen_t salen = sizeof(sa); if ((fd = anetGenericAccept(err,s,(struct sockaddr*)&sa,&salen)) == -1) return ANET_ERR; if (sa.ss_family == AF_INET) { struct sockaddr_in *s = (struct sockaddr_in *)&sa; if (ip) inet_ntop(AF_INET,(void*)&(s->sin_addr),ip,ip_len); if (port) *port = ntohs(s->sin_port); } else { struct sockaddr_in6 *s = (struct sockaddr_in6 *)&sa; if (ip) inet_ntop(AF_INET6,(void*)&(s->sin6_addr),ip,ip_len); if (port) *port = ntohs(s->sin6_port); } return fd; } // anet.c, 调用系统函数获取 socket 数据 static int anetGenericAccept(char *err, int s, struct sockaddr *sa, socklen_t *len) { int fd; while(1) { fd = accept(s,sa,len); if (fd == -1) { if (errno == EINTR) continue; else { anetSetError(err, "accept: %s", strerror(errno)); return ANET_ERR; } } break; } return fd; }
3. bioInit 线程创建
// bio.c /* Initialize the background system, spawning the thread. */ void bioInit(void) { pthread_attr_t attr; pthread_t thread; size_t stacksize; int j; /* Initialization of state vars and objects */ for (j = 0; j < BIO_NUM_OPS; j++) { pthread_mutex_init(&bio_mutex[j],NULL); pthread_cond_init(&bio_newjob_cond[j],NULL); pthread_cond_init(&bio_step_cond[j],NULL); bio_jobs[j] = listCreate(); bio_pending[j] = 0; } /* Set the stack size as by default it may be small in some system */ pthread_attr_init(&attr); pthread_attr_getstacksize(&attr,&stacksize); if (!stacksize) stacksize = 1; /* The world is full of Solaris Fixes */ while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2; pthread_attr_setstacksize(&attr, stacksize); /* Ready to spawn our threads. We use the single argument the thread * function accepts in order to pass the job ID the thread is * responsible of. */ for (j = 0; j < BIO_NUM_OPS; j++) { void *arg = (void*)(unsigned long) j; // bioProcessBackgroundJobs 用于执行线程任务 if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) { serverLog(LL_WARNING,"Fatal: Can't initialize Background Jobs."); exit(1); } bio_threads[j] = thread; } }
二、主循环服务
接下来我们看看另一个重要的流程,主循环服务。 redis作为一个存储服务,必定需要一直运行等待,这就是while死循环的应用了。在前面各种环境初始化完成后,进入while循环服务。
// src/ae.c 主循环服务 void aeMain(aeEventLoop *eventLoop) { eventLoop->stop = 0; // eventLoop 会被 acceptTcpHandler 进行数据填充 // 此处 beforesleep 为外部初始化的 // aeSetBeforeSleepProc(), 设置 beforeSleep while (!eventLoop->stop) { if (eventLoop->beforesleep != NULL) eventLoop->beforesleep(eventLoop); // 由 aeProcessEvents 处理事件 aeProcessEvents(eventLoop, AE_ALL_EVENTS); } }
很简单,就做两件事: beforesleep, aeProcessEvents, 看起来 aeProcessEvents() 是个核对服务。我们可以先观察其行为。
1. aeProcessEvents, 处理各种事件(数据准备)
// ae.c /* Process every pending time event, then every pending file event * (that may be registered by time event callbacks just processed). * Without special flags the function sleeps until some file event * fires, or when the next time event occurs (if any). * * If flags is 0, the function does nothing and returns. * if flags has AE_ALL_EVENTS set, all the kind of events are processed. * if flags has AE_FILE_EVENTS set, file events are processed. * if flags has AE_TIME_EVENTS set, time events are processed. * if flags has AE_DONT_WAIT set the function returns ASAP until all * the events that's possible to process without to wait are processed. * * The function returns the number of events processed. */ int aeProcessEvents(aeEventLoop *eventLoop, int flags) { int processed = 0, numevents; /* Nothing to do? return ASAP */ if (!(flags & AE_TIME_EVENTS) && !(flags & AE_FILE_EVENTS)) return 0; /* Note that we want call select() even if there are no * file events to process as long as we want to process time * events, in order to sleep until the next time event is ready * to fire. */ if (eventLoop->maxfd != -1 || ((flags & AE_TIME_EVENTS) && !(flags & AE_DONT_WAIT))) { int j; aeTimeEvent *shortest = NULL; struct timeval tv, *tvp; // 获取最近 timer事件, 用于判定是否有需要执行至少一个时间事件 if (flags & AE_TIME_EVENTS && !(flags & AE_DONT_WAIT)) shortest = aeSearchNearestTimer(eventLoop); if (shortest) { long now_sec, now_ms; /* Calculate the time missing for the nearest * timer to fire. */ aeGetTime(&now_sec, &now_ms); tvp = &tv; tvp->tv_sec = shortest->when_sec - now_sec; if (shortest->when_ms < now_ms) { tvp->tv_usec = ((shortest->when_ms+1000) - now_ms)*1000; tvp->tv_sec --; } else { tvp->tv_usec = (shortest->when_ms - now_ms)*1000; } if (tvp->tv_sec < 0) tvp->tv_sec = 0; if (tvp->tv_usec < 0) tvp->tv_usec = 0; } else { /* If we have to check for events but need to return * ASAP because of AE_DONT_WAIT we need to set the timeout * to zero */ if (flags & AE_DONT_WAIT) { tv.tv_sec = tv.tv_usec = 0; tvp = &tv; } else { /* Otherwise we can block */ tvp = NULL; /* wait forever */ } } // 获取等待事件 numevents = aeApiPoll(eventLoop, tvp); for (j = 0; j < numevents; j++) { aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd]; int mask = eventLoop->fired[j].mask; int fd = eventLoop->fired[j].fd; int rfired = 0; /* note the fe->mask & mask & ... code: maybe an already processed * event removed an element that fired and we still didn't * processed, so we check if the event is still valid. */ // 此处将会调用前面设置好的 acceptTcpHandler 服务 if (fe->mask & mask & AE_READABLE) { rfired = 1; fe->rfileProc(eventLoop,fd,fe->clientData,mask); } if (fe->mask & mask & AE_WRITABLE) { if (!rfired || fe->wfileProc != fe->rfileProc) fe->wfileProc(eventLoop,fd,fe->clientData,mask); } processed++; } } // 时间事件处理, serverCron 调用 /* Check time events */ if (flags & AE_TIME_EVENTS) processed += processTimeEvents(eventLoop); return processed; /* return the number of processed file/time events */ } // ae_epoll.c, 调用系统底层, 获取网络就绪事件, 放入 eventLoop->fired 中 static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) { aeApiState *state = eventLoop->apidata; int retval, numevents = 0; retval = epoll_wait(state->epfd,state->events,eventLoop->setsize, tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1); if (retval > 0) { int j; numevents = retval; for (j = 0; j < numevents; j++) { int mask = 0; struct epoll_event *e = state->events+j; // 将系统事件类型转换为 redis 的事件类型 if (e->events & EPOLLIN) mask |= AE_READABLE; if (e->events & EPOLLOUT) mask |= AE_WRITABLE; if (e->events & EPOLLERR) mask |= AE_WRITABLE; if (e->events & EPOLLHUP) mask |= AE_WRITABLE; eventLoop->fired[j].fd = e->data.fd; eventLoop->fired[j].mask = mask; } } return numevents; }
2. 主循环服务之 beforeSleep
beforeSleep是在进入 aeMain之前,直接绑定在 el 上的。 是在主循环中进行检测的条件,但其承担了重要的作用,比如客户请求的命令解析和处理!
// server.c, beforeSleep /* This function gets called every time Redis is entering the * main loop of the event driven library, that is, before to sleep * for ready file descriptors. */ void beforeSleep(struct aeEventLoop *eventLoop) { UNUSED(eventLoop); /* Call the Redis Cluster before sleep function. Note that this function * may change the state of Redis Cluster (from ok to fail or vice versa), * so it's a good idea to call it before serving the unblocked clients * later in this function. */ if (server.cluster_enabled) clusterBeforeSleep(); /* Run a fast expire cycle (the called function will return * ASAP if a fast cycle is not needed). */ if (server.active_expire_enabled && server.masterhost == NULL) activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST); /* Send all the slaves an ACK request if at least one client blocked * during the previous event loop iteration. */ if (server.get_ack_from_slaves) { robj *argv[3]; argv[0] = createStringObject("REPLCONF",8); argv[1] = createStringObject("GETACK",6); argv[2] = createStringObject("*",1); /* Not used argument. */ replicationFeedSlaves(server.slaves, server.slaveseldb, argv, 3); decrRefCount(argv[0]); decrRefCount(argv[1]); decrRefCount(argv[2]); server.get_ack_from_slaves = 0; } /* Unblock all the clients blocked for synchronous replication * in WAIT. */ if (listLength(server.clients_waiting_acks)) processClientsWaitingReplicas(); /* Try to process pending commands for clients that were just unblocked. */ // 处理可用的客户端请求 if (listLength(server.unblocked_clients)) processUnblockedClients(); // AOF刷盘服务 /* Write the AOF buffer on disk */ flushAppendOnlyFile(0); // 将一些被挂起的数据写入客户端socket中 /* Handle writes with pending output buffers. */ handleClientsWithPendingWrites(); } // blocking.c, 处理被解阻塞的客户端连接, 顺便处理客户端请求 /* This function is called in the beforeSleep() function of the event loop * in order to process the pending input buffer of clients that were * unblocked after a blocking operation. */ void processUnblockedClients(void) { listNode *ln; client *c; while (listLength(server.unblocked_clients)) { ln = listFirst(server.unblocked_clients); serverAssert(ln != NULL); c = ln->value; listDelNode(server.unblocked_clients,ln); c->flags &= ~CLIENT_UNBLOCKED; /* Process remaining data in the input buffer, unless the client * is blocked again. Actually processInputBuffer() checks that the * client is not blocked before to proceed, but things may change and * the code is conceptually more correct this way. */ if (!(c->flags & CLIENT_BLOCKED)) { if (c->querybuf && sdslen(c->querybuf) > 0) { processInputBuffer(c); } } } } // networking.c, 处理接收到的数据, 调起下游处理服务 void processInputBuffer(client *c) { server.current_client = c; /* Keep processing while there is something in the input buffer */ while(sdslen(c->querybuf)) { /* Return if clients are paused. */ if (!(c->flags & CLIENT_SLAVE) && clientsArePaused()) break; /* Immediately abort if the client is in the middle of something. */ if (c->flags & CLIENT_BLOCKED) break; /* CLIENT_CLOSE_AFTER_REPLY closes the connection once the reply is * written to the client. Make sure to not let the reply grow after * this flag has been set (i.e. don't process more commands). */ if (c->flags & CLIENT_CLOSE_AFTER_REPLY) break; /* Determine request type when unknown. */ // 根据第一个字符是否是 *, 分为两种类型协议, 处理方式不同 if (!c->reqtype) { if (c->querybuf[0] == '*') { c->reqtype = PROTO_REQ_MULTIBULK; } else { c->reqtype = PROTO_REQ_INLINE; } } if (c->reqtype == PROTO_REQ_INLINE) { if (processInlineBuffer(c) != C_OK) break; } else if (c->reqtype == PROTO_REQ_MULTIBULK) { if (processMultibulkBuffer(c) != C_OK) break; } else { serverPanic("Unknown request type"); } /* Multibulk processing could see a <= 0 length. */ if (c->argc == 0) { resetClient(c); } else { /* Only reset the client when the command was executed. */ // 经过前面请求解析后,进入请求处理核心流程 if (processCommand(c) == C_OK) resetClient(c); } } server.current_client = NULL; } // server.c, 根据网络模块解析好的客户端命令,进行相应的业务处理 /* If this function gets called we already read a whole * command, arguments are in the client argv/argc fields. * processCommand() execute the command or prepare the * server for a bulk read from the client. * * If C_OK is returned the client is still alive and valid and * other operations can be performed by the caller. Otherwise * if C_ERR is returned the client was destroyed (i.e. after QUIT). */ int processCommand(client *c) { /* The QUIT command is handled separately. Normal command procs will * go through checking for replication and QUIT will cause trouble * when FORCE_REPLICATION is enabled and would be implemented in * a regular command proc. */ if (!strcasecmp(c->argv[0]->ptr,"quit")) { addReply(c,shared.ok); c->flags |= CLIENT_CLOSE_AFTER_REPLY; return C_ERR; } /* Now lookup the command and check ASAP about trivial error conditions * such as wrong arity, bad command name and so forth. */ // 根据第一个参数 查找处理命令,在 server.c 的顶部有定义: redisCommandTable c->cmd = c->lastcmd = lookupCommand(c->argv[0]->ptr); if (!c->cmd) { flagTransaction(c); addReplyErrorFormat(c,"unknown command '%s'", (char*)c->argv[0]->ptr); return C_OK; } else if ((c->cmd->arity > 0 && c->cmd->arity != c->argc) || (c->argc < -c->cmd->arity)) { flagTransaction(c); addReplyErrorFormat(c,"wrong number of arguments for '%s' command", c->cmd->name); return C_OK; } // 以下是一系列判断,是否符合命令执行前提 /* Check if the user is authenticated */ if (server.requirepass && !c->authenticated && c->cmd->proc != authCommand) { flagTransaction(c); addReply(c,shared.noautherr); return C_OK; } /* If cluster is enabled perform the cluster redirection here. * However we don't perform the redirection if: * 1) The sender of this command is our master. * 2) The command has no key arguments. */ if (server.cluster_enabled && !(c->flags & CLIENT_MASTER) && !(c->flags & CLIENT_LUA && server.lua_caller->flags & CLIENT_MASTER) && !(c->cmd->getkeys_proc == NULL && c->cmd->firstkey == 0)) { int hashslot; if (server.cluster->state != CLUSTER_OK) { flagTransaction(c); clusterRedirectClient(c,NULL,0,CLUSTER_REDIR_DOWN_STATE); return C_OK; } else { int error_code; clusterNode *n = getNodeByQuery(c,c->cmd,c->argv,c->argc,&hashslot,&error_code); if (n == NULL || n != server.cluster->myself) { flagTransaction(c); clusterRedirectClient(c,n,hashslot,error_code); return C_OK; } } } /* Handle the maxmemory directive. * * First we try to free some memory if possible (if there are volatile * keys in the dataset). If there are not the only thing we can do * is returning an error. */ if (server.maxmemory) { int retval = freeMemoryIfNeeded(); /* freeMemoryIfNeeded may flush slave output buffers. This may result * into a slave, that may be the active client, to be freed. */ if (server.current_client == NULL) return C_ERR; /* It was impossible to free enough memory, and the command the client * is trying to execute is denied during OOM conditions? Error. */ if ((c->cmd->flags & CMD_DENYOOM) && retval == C_ERR) { flagTransaction(c); addReply(c, shared.oomerr); return C_OK; } } /* Don't accept write commands if there are problems persisting on disk * and if this is a master instance. */ if (((server.stop_writes_on_bgsave_err && server.saveparamslen > 0 && server.lastbgsave_status == C_ERR) || server.aof_last_write_status == C_ERR) && server.masterhost == NULL && (c->cmd->flags & CMD_WRITE || c->cmd->proc == pingCommand)) { flagTransaction(c); if (server.aof_last_write_status == C_OK) addReply(c, shared.bgsaveerr); else addReplySds(c, sdscatprintf(sdsempty(), "-MISCONF Errors writing to the AOF file: %s ", strerror(server.aof_last_write_errno))); return C_OK; } /* Don't accept write commands if there are not enough good slaves and * user configured the min-slaves-to-write option. */ if (server.masterhost == NULL && server.repl_min_slaves_to_write && server.repl_min_slaves_max_lag && c->cmd->flags & CMD_WRITE && server.repl_good_slaves_count < server.repl_min_slaves_to_write) { flagTransaction(c); addReply(c, shared.noreplicaserr); return C_OK; } /* Don't accept write commands if this is a read only slave. But * accept write commands if this is our master. */ if (server.masterhost && server.repl_slave_ro && !(c->flags & CLIENT_MASTER) && c->cmd->flags & CMD_WRITE) { addReply(c, shared.roslaveerr); return C_OK; } /* Only allow SUBSCRIBE and UNSUBSCRIBE in the context of Pub/Sub */ if (c->flags & CLIENT_PUBSUB && c->cmd->proc != pingCommand && c->cmd->proc != subscribeCommand && c->cmd->proc != unsubscribeCommand && c->cmd->proc != psubscribeCommand && c->cmd->proc != punsubscribeCommand) { addReplyError(c,"only (P)SUBSCRIBE / (P)UNSUBSCRIBE / PING / QUIT allowed in this context"); return C_OK; } /* Only allow INFO and SLAVEOF when slave-serve-stale-data is no and * we are a slave with a broken link with master. */ if (server.masterhost && server.repl_state != REPL_STATE_CONNECTED && server.repl_serve_stale_data == 0 && !(c->cmd->flags & CMD_STALE)) { flagTransaction(c); addReply(c, shared.masterdownerr); return C_OK; } /* Loading DB? Return an error if the command has not the * CMD_LOADING flag. */ if (server.loading && !(c->cmd->flags & CMD_LOADING)) { addReply(c, shared.loadingerr); return C_OK; } /* Lua script too slow? Only allow a limited number of commands. */ if (server.lua_timedout && c->cmd->proc != authCommand && c->cmd->proc != replconfCommand && !(c->cmd->proc == shutdownCommand && c->argc == 2 && tolower(((char*)c->argv[1]->ptr)[0]) == 'n') && !(c->cmd->proc == scriptCommand && c->argc == 2 && tolower(((char*)c->argv[1]->ptr)[0]) == 'k')) { flagTransaction(c); addReply(c, shared.slowscripterr); return C_OK; } /* Exec the command */ if (c->flags & CLIENT_MULTI && c->cmd->proc != execCommand && c->cmd->proc != discardCommand && c->cmd->proc != multiCommand && c->cmd->proc != watchCommand) { queueMultiCommand(c); addReply(c,shared.queued); } else { // 由 call 函数执行各自的 command call(c,CMD_CALL_FULL); c->woff = server.master_repl_offset; if (listLength(server.ready_keys)) handleClientsBlockedOnLists(); } return C_OK; }
到此,整个redis的启动及简要的请求处理流程就完成了。
下面以两个UML来重新审视整个流程。
1. redisServer 初始化时序图
2. 主循环服务时序图
总体来说,就单个命令的执行流程来说,简单到 就是一个 命令表的查找,到数据处理响应。